logo logo
Burkholderia contaminans: unusual cause of biliary sepsis. Ohji Goh,Ohkusu Kiyofumi,Toguchi Akihiro,Otsuka Yoshihito,Hosokawa Naoto,Iwata Kentaro Journal of infection and chemotherapy : official journal of the Japan Society of Chemotherapy We report a case of biliary tract infection caused by a strain of Burkholderia contaminans, a member of the Burkholderia cepacia complex. The patient developed sepsis after endoscopic retrograde cholangiopancreatography (ERCP). Gram-negative bacilli were isolated from blood and bile cultures. Automated bacterial identification systems identified the organism as Burkholderia cepacia, whereas DNA sequence analysis revealed that the recA gene isolate was identical to that of B. contaminans. The patient responded to therapy with the antibiotics trimethoprim/sulfamethoxazole and biliary tract decompression. This case suggests that B. contaminans can be a causative agent of healthcare-associated biliary tract infections such as ERCP-related cholangitis. 10.1007/s10156-012-0547-8
Comparative genome-wide analysis reveals that Burkholderia contaminans MS14 possesses multiple antimicrobial biosynthesis genes but not major genetic loci required for pathogenesis. MicrobiologyOpen Burkholderia contaminans MS14 shows significant antimicrobial activities against plant and animal pathogenic fungi and bacteria. The antifungal agent occidiofungin produced by MS14 has great potential for development of biopesticides and pharmaceutical drugs. However, the use of Burkholderia species as biocontrol agent in agriculture is restricted due to the difficulties in distinguishing between plant growth-promoting bacteria and the pathogenic bacteria. The complete MS14 genome was sequenced and analyzed to find what beneficial and virulence-related genes it harbors. The phylogenetic relatedness of B. contaminans MS14 and other 17 Burkholderia species was also analyzed. To research MS14's potential virulence, the gene regions related to the antibiotic production, antibiotic resistance, and virulence were compared between MS14 and other Burkholderia genomes. The genome of B. contaminans MS14 was sequenced and annotated. The genomic analyses reveal the presence of multiple gene sets for antimicrobial biosynthesis, which contribute to its antimicrobial activities. BLAST results indicate that the MS14 genome harbors a large number of unique regions. MS14 is closely related to another plant growth-promoting Burkholderia strain B. lata 383 according to the average nucleotide identity data. Moreover, according to the phylogenetic analysis, plant growth-promoting species isolated from soils and mammalian pathogenic species are clustered together, respectively. MS14 has multiple antimicrobial activity-related genes identified from the genome, but it lacks key virulence-related gene loci found in the pathogenic strains. Additionally, plant growth-promoting Burkholderia species have one or more antimicrobial biosynthesis genes in their genomes as compared with nonplant growth-promoting soil-isolated Burkholderia species. On the other hand, pathogenic species harbor multiple virulence-associated gene loci that are not present in nonpathogenic Burkholderia species. The MS14 genome as well as Burkholderia species genome show considerable diversity. Multiple antimicrobial agent biosynthesis genes were identified in the genome of plant growth-promoting species of Burkholderia. In addition, by comparing to nonpathogenic Burkholderia species, pathogenic Burkholderia species have more characterized homologs of the gene loci known to contribute to pathogenicity and virulence to plant and animals. 10.1002/mbo3.333
Incidence of Burkholderia contaminans at a cystic fibrosis centre with an unusually high representation of Burkholderia cepacia during 15 years of epidemiological surveillance. Coutinho Carla P,Barreto Celeste,Pereira Luísa,Lito Luís,Melo Cristino José,Sá-Correia Isabel Journal of medical microbiology The Burkholderia cepacia complex (Bcc) is a heterogeneous group of bacteria comprising around 20 related species. These bacteria are important opportunistic pathogens, especially in cystic fibrosis (CF) patients, and are associated with a worse prognosis and decreased life expectancy. The taxonomic position of 20 Bcc isolates retrieved from CF patients receiving care at Hospital Santa Maria (HSM), in Lisbon, from 1995 to 2006, was re-examined in the present work. These isolates, formerly classified as Burkholderia cepacia (taxon K), are here reclassified as Burkholderia contaminans, including the former B. cepacia IST408, which was the focus of previous studies regarding the biosynthesis of the exopolysaccharide 'cepacian'. The CF population examined has been previously described as having an exceptionally high representation of B. cepacia, presumably due to a contamination arising from saline solutions for nasal application. Twenty-one additional isolates, obtained from a chronically infected patient, from 2006 to 2010, were also identified as B. contaminans. This study also provides insight into the potential clinical impact of B. contaminans, a species that is rarely associated with CF infections. Isolates belonging to this species were shown to be involved in chronic and transient respiratory infections, and were associated with severe lung function deterioration and with a case of death with cepacia syndrome. However, since the patients were co-infected with Burkholderia cenocepacia and other non-Burkholderia bacteria, the role played by B. contaminans is unclear. Nevertheless, B. contaminans isolates were found to prevail over B. cenocepacia isolates during co-infection of at least one chronically infected patient. 10.1099/jmm.0.000094
Burkholderia contaminans Colonization from Contaminated Liquid Docusate (Colace) in a Immunocompetent Adult with Legionnaire's Disease: Infection Control Implications and the Potential Role of Candida pellucosa. Cunha Burke A,Gian John,Dieguez Bertamaria,Santos-Cruz Elsa,Matassa Daniela,Gerson Steve,Daniels Pat,Rosales Carlos,Silletti Rodger P Journal of clinical medicine was cultured from respiratory secretions and liquid docusate (Colace) in a Neurosurgical Intensive Care Unit (NICU) patient with community-acquired Legionnaire's disease but not from another bottle given to the patient. Unexpectedly, was cultured from two bottles, but not the bottle or respiratory secretions. , later identified as , was cultured from a bottle of liquid docusate (Colace) dispensed to a non-cystic fibrosis patient. His respiratory secretions were colonized with . Eradication of colonization in the patient's respiratory secretions was attempted. With levofloxacin, developed multidrug resistance (MDR). Subsequent TMP-SMX therapy did not result in further MDR. Nine other ICU patients were given docusate from the same lot, but there were no other isolates. colonization of respiratory secretion may be difficult to eliminate. The significance of cultured from liquid docusate (Colace) remains to be elucidated. In this case, it appeared that may have inhibited the growth of in the same bottle. Others should be alerted to the possibility that may be present in -contaminated lots of liquid docusate (Colace). 10.3390/jcm5120110
The Burkholderia contaminans prevalent phenotypes as possible markers of poor clinical outcomes in chronic lung infection of children with cystic fibrosis. Pathogens and disease Burkholderia contaminans, a species of the Burkholderia cepacia complex-prevalent in certain Latin-American and European countries-can cause chronic pulmonary infection in persons with cystic fibrosis. Our aim was to gain insights into long-term lung infections with a focus on correlating how bacterial phenotypic traits in the chronic infection impact on patients' clinical outcome. Genotypic characteristics of 85 B. contaminans isolates recovered from 70 patients were investigated. For 16 of those patients, the clinical status and bacterial phenotypic characteristics, e.g. several virulence factors, phenotypic variants, and the antimicrobial susceptibility pattern, were evaluated. Two clones were found in the whole bacterial population: (i) the multiresistant ST 872 PCR-recA-RFLP-HaeIII-K-pattern clone, which carries a pathogenic island homologous to BcenGI11 of B. cenocepacia J2315, and (ii) the ST 102 PCR-recA-RFLP-HaeIII-AT-pattern clone. The emergence of certain bacterial phenotypes in the chronic infection such as the nonmucoid phenotype, small colony variants, brownish pigmented colonies, and hypermutators, proved to be, together with coinfection with Pseudomonas aeruginosa, the possible markers of more challenging infections and poor prognosis. The presence of cocolonizers and the bacterial phenotypes that are especially adapted to persist in long-term respiratory tract infections have a crucial role in patients' clinical outcomes. 10.1093/femspd/ftad003
Plant growth promoting endophyte Burkholderia contaminans NZ antagonizes phytopathogen Macrophomina phaseolina through melanin synthesis and pyrrolnitrin inhibition. PloS one The endophytic bacterium Burkholderia contaminans NZ was isolated from jute, which is an important fiber-producing plant. This bacterium exhibits significant growth promotion activity in in vivo pot experiments, and like other plant growth-promoting (PGP) bacteria fixes nitrogen, produces indole acetic acid (IAA), siderophore, and 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity. B. contaminans NZ is considered to exert a promising growth inhibitory effect on Macrophomina phaseolina, a phytopathogen responsible for infecting hundreds of crops worldwide. This study aimed to identify the possibility of B. contaminans NZ as a safe biocontrol agent and assess its effectiveness in suppressing phytopathogenic fungi, especially M. phaseolina. Co-culture of M. phaseolina with B. contaminans NZ on both solid and liquid media revealed appreciable growth suppression of M. phaseolina and its chromogenic aberration in liquid culture. Genome mining of B. contaminans NZ using NaPDoS and antiSMASH revealed gene clusters that displayed 100% similarity for cytotoxic and antifungal substances, such as pyrrolnitrin. GC-MS analysis of B. contaminans NZ culture extracts revealed various bioactive compounds, including catechol; 9,10-dihydro-12'-hydroxy-2'-methyl-5'-(phenylmethyl)- ergotaman 3',6',18-trione; 2,3-dihydro-3,5- dihydroxy-6-methyl-4H-pyran-4-one; 1-(1,6-Dioxooctadecyl)- pyrrolidine; 9-Octadecenamide; and 2- methoxy- phenol. These compounds reportedly exhibit tyrosinase inhibitory, antifungal, and antibiotic activities. Using a more targeted approach, an RP-HPLC purified fraction was analyzed by LC-MS, confirming the existence of pyrrolnitrin in the B. contaminans NZ extract. Secondary metabolites, such as catechol and ergotaman, have been predicted to inhibit melanin synthesis in M. phaseolina. Thus, B. contaminans NZ appears to inhibit phytopathogens by apparently impairing melanin synthesis and other potential biochemical pathways, exhibiting considerable fungistatic activity. 10.1371/journal.pone.0257863
The Genetic relatedness of Burkholderia contaminans clinical isolates from cystic fibrosis and non-cystic fibrosis patients in Argentina. Journal of infection in developing countries INTRODUCTION:The Burkholderia cepacia complex (BCC) bacteria are opportunistic pathogens that cause nosocomial infections and are especially dangerous for cystic fibrosis (CF) patients. Burkholderia contaminans is an emerging BCC species isolated from CF patients that also occurs as a contaminant in pharmaceutical and personal care products, sometimes linking it with outbreaks. METHODOLOGY:A total of 55 B. contaminans isolates from CF and non-CF patients in Argentina were identified by recA sequencing and MALDI TOF MS. A standardized Pulsed Field Gel Electrophoresis (PFGE) protocol was set up in order to assess genetic diversity, outbreak investigations, and possible clone persistence. RESULTS:All isolates were identified as B. contaminans by both MALDI-TOF MS and recA sequence analysis. PFGE has enabled us to compare and determine the genetic relationship between B. contaminans isolates. Isolates were distributed in different PFGE clusters with evidence of the presence and persistence of a clone, over a period of 3 years, in the same hospital. This large hospital outbreak involved CF and non-CF patients. Moreover, PFGE results showed a good correlation between sporadic or outbreak-related isolates and the available epidemiological information. CONCLUSIONS:These findings highlight the importance of B. contaminans in Argentina and provide evidence for encouraging the surveillance of highly transmissible clones. The study also contributes to global knowledge about B. contaminans infections. 10.3855/jidc.13928
Comprehensive genome analysis of Burkholderia contaminans SK875, a quorum-sensing strain isolated from the swine. AMB Express The Burkholderia cepacia complex (BCC) is a Gram-negative bacterial, including Burkholderia contaminans species. Although the plain Burkholderia is pervasive from taxonomic and genetic perspectives, a common characteristic is that they may use the quorum-sensing (QS) system. In our previous study, we generated the complete genome sequence of Burkholderia contaminans SK875 isolated from the respiratory tract. To our knowledge, this is the first study to report functional genomic features of B. contaminans SK875 for understanding the pathogenic characteristics. In addition, comparative genomic analysis for five B. contaminans genomes was performed to provide comprehensive information on the disease potential of B. contaminans species. Analysis of average nucleotide identity (ANI) showed that the genome has high similarity (> 96%) with other B. contaminans strains. Five B. contaminans genomes yielded a pangenome of 8832 coding genes, a core genome of 5452 genes, the accessory genome of 2128 genes, and a unique genome of 1252 genes. The 186 genes were specific to B. contaminans SK875, including toxin higB-2, oxygen-dependent choline dehydrogenase, and hypothetical proteins. Genotypic analysis of the antimicrobial resistance of B. contaminans SK875 verified resistance to tetracycline, fluoroquinolone, and aminoglycoside. Compared with the virulence factor database, we identified 79 promising virulence genes such as adhesion system, invasions, antiphagocytic, and secretion systems. Moreover, 45 genes of 57 QS-related genes that were identified in B. contaminans SK875 indicated high sequence homology with other B. contaminans strains. Our results will help to gain insight into virulence, antibiotic resistance, and quorum sensing for B. contaminans species. 10.1186/s13568-023-01537-8
Burkholderia contaminans Bacteriophage CSP3 Requires O-Antigen Polysaccharides for Infection. Microbiology spectrum The Burkholderia cepacia complex is a group of opportunistic pathogens that cause both severe acute and chronic respiratory infections. Due to their large genomes containing multiple intrinsic and acquired antimicrobial resistance mechanisms, treatment is often difficult and prolonged. One alternative to traditional antibiotics for treatment of bacterial infections is bacteriophages. Therefore, the characterization of bacteriophages infective for the Burkholderia cepacia complex is critical to determine their suitability for any future use. Here, we describe the isolation and characterization of novel phage, CSP3, infective against a clinical isolate of Burkholderia contaminans. CSP3 is a new member of the genus that targets various Burkholderia cepacia complex organisms. Single nucleotide polymorphism (SNP) analysis of CSP3-resistant B. contaminans showed that mutations to the O-antigen ligase gene, , consequently inhibited CSP3 infection. This mutant phenotype is predicted to result in the loss of cell surface O-antigen, contrary to a related phage that requires the inner core of the lipopolysaccharide for infection. Additionally, liquid infection assays showed that CSP3 provides suppression of B. contaminans growth for up to 14 h. Despite the inclusion of genes that are typical of the phage lysogenic life cycle, we saw no evidence of CSP3's ability to lysogenize. Continuation of phage isolation and characterization is crucial in developing large and diverse phage banks for global usage in cases of antibiotic-resistant bacterial infections. Amid the global antibiotic resistance crisis, novel antimicrobials are needed to treat problematic bacterial infections, including those from the Burkholderia cepacia complex. One such alternative is the use of bacteriophages; however, a lot is still unknown about their biology. Bacteriophage characterization studies are of high importance for building phage banks, as future work in developing treatments such as phage cocktails should require well-characterized phages. Here, we report the isolation and characterization of a novel Burkholderia contaminans phage that requires the O-antigen for infection, a distinct phenotype seen among other related phages. Our findings presented in this article expand on the ever-evolving phage biology field, uncovering unique phage-host relationships and mechanisms of infection. 10.1128/spectrum.05332-22