logo logo
Wireless Sensing Technology Combined with Facial Expression to Realize Multimodal Emotion Recognition. Sensors (Basel, Switzerland) Emotions significantly impact human physical and mental health, and, therefore, emotion recognition has been a popular research area in neuroscience, psychology, and medicine. In this paper, we preprocess the raw signals acquired by millimeter-wave radar to obtain high-quality heartbeat and respiration signals. Then, we propose a deep learning model incorporating a convolutional neural network and gated recurrent unit neural network in combination with human face expression images. The model achieves a recognition accuracy of 84.5% in person-dependent experiments and 74.25% in person-independent experiments. The experiments show that it outperforms a single deep learning model compared to traditional machine learning algorithms. 10.3390/s23010338
Real-Time EEG-Based Emotion Recognition. Sensors (Basel, Switzerland) Most studies have demonstrated that EEG can be applied to emotion recognition. In the process of EEG-based emotion recognition, real-time is an important feature. In this paper, the real-time problem of emotion recognition based on EEG is explained and analyzed. Secondly, the short time window length and attention mechanisms are designed on EEG signals to follow emotion change over time. Then, long short-term memory with the additive attention mechanism is used for emotion recognition, due to timely emotion updates, and the model is applied to the SEED and SEED-IV datasets to verify the feasibility of real-time emotion recognition. The results show that the model performs relatively well in terms of real-time performance, with accuracy rates of 85.40% and 74.26% on SEED and SEED-IV, but the accuracy rate has not reached the ideal state due to data labeling and other losses in the pursuit of real-time performance. 10.3390/s23187853
A Review of Emotion Recognition Using Physiological Signals. Sensors (Basel, Switzerland) Emotion recognition based on physiological signals has been a hot topic and applied in many areas such as safe driving, health care and social security. In this paper, we present a comprehensive review on physiological signal-based emotion recognition, including emotion models, emotion elicitation methods, the published emotional physiological datasets, features, classifiers, and the whole framework for emotion recognition based on the physiological signals. A summary and comparation among the recent studies has been conducted, which reveals the current existing problems and the future work has been discussed. 10.3390/s18072074
Emotion Recognition Using Different Sensors, Emotion Models, Methods and Datasets: A Comprehensive Review. Sensors (Basel, Switzerland) In recent years, the rapid development of sensors and information technology has made it possible for machines to recognize and analyze human emotions. Emotion recognition is an important research direction in various fields. Human emotions have many manifestations. Therefore, emotion recognition can be realized by analyzing facial expressions, speech, behavior, or physiological signals. These signals are collected by different sensors. Correct recognition of human emotions can promote the development of affective computing. Most existing emotion recognition surveys only focus on a single sensor. Therefore, it is more important to compare different sensors or unimodality and multimodality. In this survey, we collect and review more than 200 papers on emotion recognition by literature research methods. We categorize these papers according to different innovations. These articles mainly focus on the methods and datasets used for emotion recognition with different sensors. This survey also provides application examples and developments in emotion recognition. Furthermore, this survey compares the advantages and disadvantages of different sensors for emotion recognition. The proposed survey can help researchers gain a better understanding of existing emotion recognition systems, thus facilitating the selection of suitable sensors, algorithms, and datasets. 10.3390/s23052455