logo logo
Responses to lead stress in : insights into antioxidative defence mechanisms and changes in flavonoids profile. Functional plant biology : FPB Lead (Pb) induces oxidative stress in plants, which results in different responses, including the production of antioxidants and changes in the profile of secondary metabolites. In this study, the responses of Scrophularia striata exposed to 250mgL-1 Pb (NO3 )2 in a hydroponic environment were determined. Growth parameters, oxidative and antioxidative responses, redox status, and the concentration of Pb were analysed in roots and shoots. Malondialdehyde and hydrogen peroxide (H2 O2 ) levels in the roots were significantly increased and reached their highest value at 72h after Pb treatment. Superoxide dismutase, catalase, and peroxidase, as an enzymatic antioxidant system, were responsible for reactive oxygen species scavenging, where their activities were increased in the shoot and root of Pb-treated plants. Enzymatic antioxidant activities were probably not enough to remove a significant H2 O2 content in response to Pb treatment. Therefore, other defence responses were activated. The results stated that the flavonoid components of S. striata progressed towards the increase of isoflavone, flavanol, and stilbenoid contents under Pb treatment. In general, S. striata stimulates the enzymatic defence system and activates the non-enzymatic system by modulating the profile of flavonoids toward the production of flavonoids with high antioxidant activity, such as quercetin and myricetin in response to Pb stress. 10.1071/FP23236
Scrophularia lucida L. as a valuable source of bioactive compounds for pharmaceutical applications: In vitro antioxidant, anti-inflammatory, enzyme inhibitory properties, in silico studies, and HPLC profiles. Journal of pharmaceutical and biomedical analysis The genus Scrophularia has received much interest with regards to its traditional uses against eczema, psoriasis, and mastitis. Yet, the medicinal properties of some species still need to be scientifically validated. The present study was designed to investigate into the biological properties of various solvent extracts (ethyl acetate, methanol, and aqueous) of the roots and aerial parts of Scrophularia lucida based on its antioxidant, anti-inflammatory, and enzyme inhibitory activities together with phytochemical screening. Our results revealed that the solvent extracts differed in their biological effectiveness. The root ethyl acetate extract showed the highest ABTS scavenging, FRAP, CUPRAC, and inhibitory activity against AChE and α-glucosidase. The ethyl acetate extract of the aerial parts displayed the highest BChE and α-amylase inhibition and antioxidant effect in the phosphomolybdenum assay, while the methanol extracts of both parts were the most effective DPPH scavengers and tyrosinase inhibitors. The methanol extracts of the root and aerial parts also inhibited NO production in lipopolysaccharide (LPS)-stimulated murine leukemic monocyte-macrophage cell (4.99% and 10.77%, respectively), at 31.25 μg/mL concentration. The highest TPC (34.98 mg GAE/g extract) and TFC (48.33 mg RE/g extract) were observed in the ethyl acetate extract of the root and aerial parts, respectively. The most abundant compounds in the root ethyl acetate extract were luteolin (852 μg/g extract), rosmarinic acid (522 μg/g extract), and hesperidin (394 μg/g extract) while kaempferol was most abundant in the ethyl acetate extract of the aerial parts (628 μg/g extract). In silico experiments were conducted on tyrosinase and the higher docking values were observed for rosmarinic acid and hesperidin. The present findings provide base line information which tend to support the potential use of S. lucida in the management of several chronic diseases, including Alzheimer's disease and diabetes mellitus. 10.1016/j.jpba.2018.09.035
Study of chemical composition and antimicrobial activity of leaves and roots of Scrophularia ningpoensis. Li Jing,Huang Xiaoyan,Du Xianjie,Sun Wenji,Zhang Yongmin Natural product research Two saponins: scrokoelziside A (1), scrokoelziside B (2), one iridoid glycoside, eurostoside (3), and two flavonoids: nepitrin (4) and homoplantaginin (5), were isolated from the leaves of Scrophularia ningpoensis for the first time. Moreover, eight known compounds: cane sugar (6), harpagide (7), aucubin (8), 6-O-methylcatalpol (9), harpagoside (10), angoroside C (11), beta-sitosterol (12) and beta-sitosterol glucoside (13) were isolated from the roots of S. ningpoensis. Furthermore, the antimicrobial activity of the extracts of the leaves of S. ningpoensis and the 10 compounds (1, 2, 3, 4, 5, 7, 8, 9, 10, 11) was studied in vitro against eight reference strains of bacteria by using the disc-diffusion method and micro-well dilution assay. The extracts of leaves and scrokoelziside A are effective against beta-haemolytic streptococci but had no effect against other strains. The extract of roots and other compounds showed no activity against all bacterial strains at the test concentration. 10.1080/14786410802696247
Dynamic analysis of secondary metabolites in various parts of Scrophularia ningpoensis by liquid chromatography tandem mass spectrometry. Xie Guoyong,Jiang Yuxuan,Huang Mengmeng,Zhu Yan,Wu Gang,Qin Minjian Journal of pharmaceutical and biomedical analysis The roots of Scrophularia ningpoensis are used as traditional medicines for thousands of years in China, nevertheless the stems and leaves were discarded as non-medicinal parts. Modern research have indicated the chemical constituents in the stems and leaves are similar to the identified in the roots, and the therapeutic effects of stems and leaves are superior to roots for some disease. In the study, the chemical constituents in roots, stems and leaves of S. ningpoensis were analyzed qualitatively by HPLC-Q-TOF-MS/MS. 40 compounds including 17 iridoid glycosides, 15 phenylpropanoids and 8 flavonoids were identified. Meantime, the dynamic accumulations of six index constituents in various parts were measured by HPLC-DAD. The results indicated the S. ningpoensis stems contained high content of aucubin (30.09 mg/g) and harpagide (28.4 mg/g) in August, and the leaves contained high content of harpagoside (12.02 mg/g) in July. The study provides the basis for the full development and utilization of the resource of stems and leaves from S. ningpoensis. 10.1016/j.jpba.2020.113307
In Vitro Propagation, Phytochemical Analysis, and Evaluation of Free Radical Scavenging Property of Scrophularia kakudensis Franch Tissue Extracts. Manivannan Abinaya,Soundararajan Prabhakaran,Park Yoo Gyeong,Jeong Byoung Ryong BioMed research international The current study deals with in vitro propagation, antioxidant property estimation, and assessment of acacetin content in Scrophularia kakudensis Franch. Adventitious shoot induction was achieved from the nodal explant with the highest number of adventitious shoots per explant (17.4) on Murashige and Skoog's (MS) medium fortified with 2.0 mg·L(-1) 6-benzyladenine (BA) and 0.5 mg L(-1) indole-3-acetic acid (IAA). Maximum number of roots per plant (16.5) was noted in half strength MS medium supplemented with 0.5 mg·L(-1) IAA. The regenerated plants displayed successful survival ratio (95%) in the greenhouse. The highest content of acacetin, a pharmaceutically important flavonoid, was observed in the shoot extracts (in vitro: 32.83 µg·g(-1) FW; in vivo: 30.05 µg·g(-1) FW) followed by root extracts. Total phenol and flavonoid contents along with free radical scavenging assays revealed the occurrence of larger amount of antioxidants in shoot extract in comparison with callus and root extracts of S. kakudensis. Thus, the outcome of the present study can be highly beneficial for the germplasm conservation and commercial cultivation of S. kakudensis for therapeutic purposes. 10.1155/2015/480564
Evaluation of in vivo analgesic activity of Scrophularia kotscyhana and isolation of bioactive compounds through activity-guided fractionation. Renda Gülin,Korkmaz Büşra,Kılıç Merve,Duman Mine Kadıoğlu,Kırmızıbekmez Hasan Natural product research The present study was undertaken to evaluate the in vivo analgesic activities of the extracts prepared from the aerial parts and roots of Scrophularia kotscyhana and to isolate the bioactive metabolites from the most active extract. Analgesic activities of all extracts and subextracts at the doses of 5, 10 and 30 mg/kg (i.p.) were examined using hot plate test in mice. Among the tested extracts, MeOH extract prepared from the aerial parts and the n-butanol subextract prepared thereof displayed the best analgesic activity at all doses. Phytochemical studies on n-butanol subextract led to the isolation of two new iridoid glycosides as an inseparable mixture, 8-O-acetyl-4'-O-(E)-(p-coumaroyl)-harpagide (1) and 8-O-acetyl-4'-O-(Z)-(p-coumaroyl)-harpagide (2) along with five known secondary metabolites, β-sitosterol 3-O-β-glucopyranoside (3), apigenin 7-O-β-glucopyranoside (4), apigenin 7-O-rutinoside (5), luteolin 7-O-β-glucopyranoside (6) and luteolin 7-O-rutinoside (7). The iridoid mixture (1 and 2), 3 and 4 elicited significant inhibition of pain at 5 mg/kg dose. 10.1080/14786419.2017.1356829
Scrophularia ningpoensis Hemsl: a review of its phytochemistry, pharmacology, quality control and pharmacokinetics. Zhang Qing,Liu An,Wang Yuesheng The Journal of pharmacy and pharmacology OBJECTIVES:Scrophularia ningpoensis Hemsl (SNH) is a commonly used medicinal plant in East Asia. Scrophulariae Radix (SR) is the dried roots of SNH, and is one of the most commonly used medicinal parts of SNH, and is an essential traditional medicine and widely used in East Asia for more than 2000 years. SR is used for clearing away heat and cooling blood, nourishing Yin and reducing fire, detoxicating and resolving a mass. The purpose of this paper is to systematically review the phytochemistry, pharmacology, quality control and pharmacokinetics of SNH based on the surveyed and summarized literature. KEY FINDINGS:Up to now, iridoids, phenolic glycosides, phenolic acids, alkaloids, flavonoids, triterpenes and other compounds have been isolated and identified from SNH. The extract and chemical components of SNH exerts multiple pharmacological effects, such as hepatoprotective effect, anti-inflammatory effect, neuroprotective effect, anti-ventricular remodeling effect and other activities. Various methods have been developed for the quality control of SNH, mainly for SR. Some bioactive compounds in SNH exhibited different pharmacokinetic behaviours and individual metabolic transformation profiles. SUMMARY:This review will contribute to understanding the correlation between the pharmacological activities and the traditional usage of SNH, and useful to rational use and drug development in the future. 10.1093/jpp/rgaa036
[Chemical constituents, pharmacological activities, processing and clinical application of traditional Chinese medicine Scrophulariae Radix: a review]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica Traditional Chinese medicine Scrophulariae Radix, which is also called Yuan Shen, black Shen, is the dried root of Scrophularia ningpoensis of the Scrophulariaceae family. Research has indicated that the chemical constituents of Scrophulariae Radix mainly include terpenoids, phenylpropanoids, organic acids, volatile oils, steroids, sugars, flavonoids, alkaloids and phenols, among which iridoids and phenylpropanoids were the main active constituents. It has been reported that extracts of Scrophulariae Radix or its active substances have anti-inflammatory, antioxidant, hepatoprotective, anti-tumor, anti-fatigue, uric acid-lowering, anti-depression, myocardial cell-protective and other pharmacological activities, and can regulate cardiovascular system, central nervous system and immune system. This paper reviewed the present research achievements of Scrophulariae Radix in chemical constituents, pharmacological activities, processing methods, toxicity and other aspects, and the clinical application of Scrophulariae Radix in ancient and modern times was illustrated. This paper aimed to provide reference for further research of Scrophulariae Radix and facilitated its clinical application. 10.19540/j.cnki.cjcmm.20230123.201