logo logo
Platelets Facilitate Wound Healing by Mitochondrial Transfer and Reducing Oxidative Stress in Endothelial Cells. Oxidative medicine and cellular longevity As a critical member in wound healing, vascular endothelial cells (ECs) impaired under high levels of reactive oxygen species (ROS) would hamper neovascularization. Mitochondria transfer can reduce intracellular ROS damage under pathological condition. Meanwhile, platelets can release mitochondria and alleviate oxidative stress. However, the mechanism by which platelets promote cell survival and reduce oxidative stress damage has not been clarified. Here, first, we selected ultrasound as the best method for subsequent experiments by detecting the growth factors and mitochondria released from manipulation platelet concentrates (PCs), as well as the effect of manipulation PCs on the proliferation and migration of HUVECs. Then, we found that sonicate platelet concentrates (SPC) decreased the level of ROS in HUVECs treated with hydrogen peroxide in advance, increased mitochondrial membrane potential, and reduced apoptosis. By transmission electron microscope, we saw that two kinds of mitochondria, free or wrapped in vesicles, were released by activated platelets. In addition, we explored that platelet-derived mitochondria were transferred to HUVECs partly by means of dynamin-dependent clathrin-mediated endocytosis. Consistently, we determined that platelet-derived mitochondria reduced apoptosis of HUVECs caused by oxidative stress. What is more, we screened survivin as the target of platelet-derived mitochondria via high-throughput sequencing. Finally, we demonstrated that platelet-derived mitochondria promoted wound healing in vivo. Overall, these findings revealed that platelets are important donors of mitochondria, and platelet-derived mitochondria can promote wound healing by reducing apoptosis caused by oxidative stress in vascular endothelial cells. And survivin is a potential target. These results further expand the knowledge of the platelet function and provide new insights into the role of platelet-derived mitochondria in wound healing. 10.1155/2023/2345279
Carnitine derivatives beyond fatigue: an update. Current opinion in gastroenterology PURPOSE OF REVIEW:Carnitine is an essential micronutrient that transfer long-chain fatty acids from the cytoplasm into the mitochondrial matrix for the β-oxidation. Carnitine is also needed for the mitochondrial efflux of acyl groups in the cases wherein substrate oxidation exceeds energy demands. RECENT FINDINGS:Carnitine deficiency can affect the oxidation of free fatty acids in the mitochondria resulting in the aggregation of lipids in the cytoplasm instead of entering the citric acid cycle. The aggregation leads a lack of energy, acetyl coenzyme A accumulation in the mitochondria and cytotoxic production. SUMMARY:Carnitine and its derivatives show great clinical therapeutic effect without significant side effects. 10.1097/MOG.0000000000000906
From Mitochondria to Atherosclerosis: The Inflammation Path. Suárez-Rivero Juan M,Pastor-Maldonado Carmen J,Povea-Cabello Suleva,Álvarez-Córdoba Mónica,Villalón-García Irene,Talaverón-Rey Marta,Suárez-Carrillo Alejandra,Munuera-Cabeza Manuel,Sánchez-Alcázar José A Biomedicines Inflammation is a key process in metazoan organisms due to its relevance for innate defense against infections and tissue damage. However, inflammation is also implicated in pathological processes such as atherosclerosis. Atherosclerosis is a chronic inflammatory disease of the arterial wall where unstable atherosclerotic plaque rupture causing platelet aggregation and thrombosis may compromise the arterial lumen, leading to acute or chronic ischemic syndromes. In this review, we will focus on the role of mitochondria in atherosclerosis while keeping inflammation as a link. Mitochondria are the main source of cellular energy. Under stress, mitochondria are also capable of controlling inflammation through the production of reactive oxygen species (ROS) and the release of mitochondrial components, such as mitochondrial DNA (mtDNA), into the cytoplasm or into the extracellular matrix, where they act as danger signals when recognized by innate immune receptors. Primary or secondary mitochondrial dysfunctions are associated with the initiation and progression of atherosclerosis by elevating the production of ROS, altering mitochondrial dynamics and energy supply, as well as promoting inflammation. Knowing and understanding the pathways behind mitochondrial-based inflammation in atheroma progression is essential to discovering alternative or complementary treatments. 10.3390/biomedicines9030258