logo logo
Performance of Fully-Automated High-Throughput Plasma Biomarker Assays for Alzheimer's Disease in Amnestic Mild Cognitive Impairment Subjects. The journal of prevention of Alzheimer's disease INTRODUCTION:Novel plasma biomarkers are promising for identifying Alzheimer's disease (AD) pathological processes in vivo, but most currently employed assays have limitations precluding widespread use. METHODS:CSF and plasma samples were collected from seventy amnestic mild cognitive impairment (aMCI) subjects, stratified as A+ and A-. CSF Aβ40, Aβ42, p-tau181 and t-tau and plasma Aβ40, Aβ42 and p-tau181 quantification were conducted using the Lumipulse G assays (Fujirebio), to evaluate the diagnostic performance of plasma biomarkers and assess their associations with CSF biomarkers. RESULTS:All plasma biomarkers except Aβ40 showed a very good accuracy in distinguishing A+ aMCI from A- aMCI, Aβ42/p-tau181 ratio being the most accurate (AUC 0.895, sensitivity 95.1%, specificity 82.8%). Plasma biomarkers levels were significantly associated with CSF biomarkers concentration. DISCUSSION:High-throughput and fully-automated plasma assays could be helpful in discriminating with high accuracy between aMCI in the AD continuum and aMCI unlikely due to AD in clinical settings. 10.14283/jpad.2024.58
Clinical Significance of the Plasma Biomarker Panels in Amyloid-Negative and Tau PET-Positive Amnestic Patients: Comparisons with Alzheimer's Disease and Unimpaired Cognitive Controls. International journal of molecular sciences The purpose of this study was to investigate whether plasma biomarkers can help to diagnose, differentiate from Alzheimer disease (AD), and stage cognitive performance in patients with positron emission tomography (PET)-confirmed primary age-related tauopathy, termed tau-first cognitive proteinopathy (TCP) in this study. In this multi-center study, we enrolled 285 subjects with young-onset AD (YOAD; = 55), late-onset AD (LOAD; = 96), TCP ( = 44), and cognitively unimpaired controls (CTL; = 90) and analyzed plasma Aβ42/Aβ40, pTau181, neurofilament light (NFL), and total-tau using single-molecule assays. Amyloid and tau centiloids reflected pathological burden, and hippocampal volume reflected structural integrity. Receiver operating characteristic curves and areas under the curves (AUCs) were used to determine the diagnostic accuracy of plasma biomarkers compared to hippocampal volume and amyloid and tau centiloids. The Mini-Mental State Examination score (MMSE) served as the major cognitive outcome. Logistic stepwise regression was used to assess the overall diagnostic accuracy, combining fluid and structural biomarkers and a stepwise linear regression model for the significant variables for MMSE. For TCP, tau centiloid reached the highest AUC for diagnosis (0.79), while pTau181 could differentiate TCP from YOAD (accuracy 0.775) and LOAD (accuracy 0.806). NFL reflected the clinical dementia rating in TCP, while pTau181 (rho = 0.3487, = 0.03) and Aβ42/Aβ40 (rho = -0.36, = 0.02) were significantly correlated with tau centiloid. Hippocampal volume (unstandardized β = 4.99, = 0.01) outperformed all of the fluid biomarkers in predicting MMSE scores in the TCP group. Our results support the superiority of tau PET to diagnose TCP, pTau181 to differentiate TCP from YOAD or LOAD, and NFL for functional staging. 10.3390/ijms25115607
Single-cell multiregion dissection of Alzheimer's disease. Nature Alzheimer's disease is the leading cause of dementia worldwide, but the cellular pathways that underlie its pathological progression across brain regions remain poorly understood. Here we report a single-cell transcriptomic atlas of six different brain regions in the aged human brain, covering 1.3 million cells from 283 post-mortem human brain samples across 48 individuals with and without Alzheimer's disease. We identify 76 cell types, including region-specific subtypes of astrocytes and excitatory neurons and an inhibitory interneuron population unique to the thalamus and distinct from canonical inhibitory subclasses. We identify vulnerable populations of excitatory and inhibitory neurons that are depleted in specific brain regions in Alzheimer's disease, and provide evidence that the Reelin signalling pathway is involved in modulating the vulnerability of these neurons. We develop a scalable method for discovering gene modules, which we use to identify cell-type-specific and region-specific modules that are altered in Alzheimer's disease and to annotate transcriptomic differences associated with diverse pathological variables. We identify an astrocyte program that is associated with cognitive resilience to Alzheimer's disease pathology, tying choline metabolism and polyamine biosynthesis in astrocytes to preserved cognitive function late in life. Together, our study develops a regional atlas of the ageing human brain and provides insights into cellular vulnerability, response and resilience to Alzheimer's disease pathology. 10.1038/s41586-024-07606-7
Changes in Alzheimer Disease Blood Biomarkers and Associations With Incident All-Cause Dementia. JAMA Importance:Plasma biomarkers show promise for identifying Alzheimer disease (AD) neuropathology and neurodegeneration, but additional examination among diverse populations and throughout the life course is needed. Objective:To assess temporal plasma biomarker changes and their association with all-cause dementia, overall and among subgroups of community-dwelling adults. Design, Setting, and Participants:In 1525 participants from the US-based Atherosclerosis Risk in Communities (ARIC) study, plasma biomarkers were measured using stored specimens collected in midlife (1993-1995, mean age 58.3 years) and late life (2011-2013, mean age 76.0 years; followed up to 2016-2019, mean age 80.7 years). Midlife risk factors (hypertension, diabetes, lipids, coronary heart disease, cigarette use, and physical activity) were assessed for their associations with change in plasma biomarkers over time. The associations of biomarkers with incident all-cause dementia were evaluated in a subpopulation (n = 1339) who were dementia-free in 2011-2013 and had biomarker measurements in 1993-1995 and 2011-2013. Exposure:Plasma biomarkers of amyloid-β 42 to amyloid-β 40 (Aβ42:Aβ40) ratio, phosphorylated tau at threonine 181 (p-tau181), neurofilament light (NfL), and glial fibrillary acidic protein (GFAP) were measured using the Quanterix Simoa platform. Main Outcomes and Measures:Incident all-cause dementia was ascertained from January 1, 2012, through December 31, 2019, from neuropsychological assessments, semiannual participant or informant contact, and medical record surveillance. Results:Among 1525 participants (mean age, 58.3 [SD, 5.1] years), 914 participants (59.9%) were women, and 394 participants (25.8%) were Black. A total of 252 participants (16.5%) developed dementia. Decreasing Aβ42:Aβ40 ratio and increasing p-tau181, NfL, and GFAP were observed from midlife to late life, with more rapid biomarker changes among participants carrying the apolipoprotein E epsilon 4 (APOEε4) allele. Midlife hypertension was associated with a 0.15-SD faster NfL increase and a 0.08-SD faster GFAP increase per decade; estimates for midlife diabetes were a 0.11-SD faster for NfL and 0.15-SD faster for GFAP. Only AD-specific biomarkers in midlife demonstrated long-term associations with late-life dementia (hazard ratio per SD lower Aβ42:Aβ40 ratio, 1.11; 95% CI, 1.02-1.21; per SD higher p-tau181, 1.15; 95% CI, 1.06-1.25). All plasma biomarkers in late life had statistically significant associations with late-life dementia, with NfL demonstrating the largest association (1.92; 95% CI, 1.72-2.14). Conclusions and Relevance:Plasma biomarkers of AD neuropathology, neuronal injury, and astrogliosis increase with age and are associated with known dementia risk factors. AD-specific biomarkers' association with dementia starts in midlife whereas late-life measures of AD, neuronal injury, and astrogliosis biomarkers are all associated with dementia. 10.1001/jama.2024.6619
Plasma P-tau181 in Alzheimer's disease: relationship to other biomarkers, differential diagnosis, neuropathology and longitudinal progression to Alzheimer's dementia. Janelidze Shorena,Mattsson Niklas,Palmqvist Sebastian,Smith Ruben,Beach Thomas G,Serrano Geidy E,Chai Xiyun,Proctor Nicholas K,Eichenlaub Udo,Zetterberg Henrik,Blennow Kaj,Reiman Eric M,Stomrud Erik,Dage Jeffrey L,Hansson Oskar Nature medicine Plasma phosphorylated tau181 (P-tau181) might be increased in Alzheimer's disease (AD), but its usefulness for differential diagnosis and prognosis is unclear. We studied plasma P-tau181 in three cohorts, with a total of 589 individuals, including cognitively unimpaired participants and patients with mild cognitive impairment (MCI), AD dementia and non-AD neurodegenerative diseases. Plasma P-tau181 was increased in preclinical AD and further increased at the MCI and dementia stages. It correlated with CSF P-tau181 and predicted positive Tau positron emission tomography (PET) scans (area under the curve (AUC) = 0.87-0.91 for different brain regions). Plasma P-tau181 differentiated AD dementia from non-AD neurodegenerative diseases with an accuracy similar to that of Tau PET and CSF P-tau181 (AUC = 0.94-0.98), and detected AD neuropathology in an autopsy-confirmed cohort. High plasma P-tau181 was associated with subsequent development of AD dementia in cognitively unimpaired and MCI subjects. In conclusion, plasma P-tau181 is a noninvasive diagnostic and prognostic biomarker of AD, which may be useful in clinical practice and trials. 10.1038/s41591-020-0755-1
Diagnostic value of plasma phosphorylated tau181 in Alzheimer's disease and frontotemporal lobar degeneration. Nature medicine With the potential development of new disease-modifying Alzheimer's disease (AD) therapies, simple, widely available screening tests are needed to identify which individuals, who are experiencing symptoms of cognitive or behavioral decline, should be further evaluated for initiation of treatment. A blood-based test for AD would be a less invasive and less expensive screening tool than the currently approved cerebrospinal fluid or amyloid β positron emission tomography (PET) diagnostic tests. We examined whether plasma tau phosphorylated at residue 181 (pTau181) could differentiate between clinically diagnosed or autopsy-confirmed AD and frontotemporal lobar degeneration. Plasma pTau181 concentrations were increased by 3.5-fold in AD compared to controls and differentiated AD from both clinically diagnosed (receiver operating characteristic area under the curve of 0.894) and autopsy-confirmed frontotemporal lobar degeneration (area under the curve of 0.878). Plasma pTau181 identified individuals who were amyloid β-PET-positive regardless of clinical diagnosis and correlated with cortical tau protein deposition measured by F-flortaucipir PET. Plasma pTau181 may be useful to screen for tau pathology associated with AD. 10.1038/s41591-020-0762-2
Plasma biomarkers predict Alzheimer's disease before clinical onset in Chinese cohorts. Nature communications Plasma amyloid-β (Aβ)42, phosphorylated tau (p-tau)181, and neurofilament light chain (NfL) are promising biomarkers of Alzheimer's disease (AD). However, whether these biomarkers can predict AD in Chinese populations is yet to be fully explored. We therefore tested the performance of these plasma biomarkers in 126 participants with preclinical AD and 123 controls with 8-10 years of follow-up from the China Cognition and Aging Study. Plasma Aβ42, p-tau181, and NfL were significantly correlated with cerebrospinal fluid counterparts and significantly altered in participants with preclinical AD. Combining plasma Aβ42, p-tau181, and NfL successfully discriminated preclinical AD from controls. These findings were validated in a replication cohort including 51 familial AD mutation carriers and 52 non-carriers from the Chinese Familial Alzheimer's Disease Network. Here we show that plasma Aβ42, p-tau181, and NfL may be useful for predicting AD 8 years before clinical onset in Chinese populations. 10.1038/s41467-023-42596-6
Accelerating Alzheimer's therapeutic development: The past and future of clinical trials. Cell Alzheimer's disease (AD) research has entered a new era with the recent positive phase 3 clinical trials of the anti-Aβ antibodies lecanemab and donanemab. Why did it take 30 years to achieve these successes? Developing potent therapies for reducing fibrillar amyloid was key, as was selection of patients at relatively early stages of disease. Biomarkers of the target pathologies, including amyloid and tau PET, and insights from past trials were also critical to the recent successes. Moving forward, the challenge will be to develop more efficacious therapies with greater efficiency. Novel trial designs, including combination therapies and umbrella and basket protocols, will accelerate clinical development. Better diversity and inclusivity of trial participants are needed, and blood-based biomarkers may help to improve access for medically underserved groups. Incentivizing innovation in both academia and industry through public-private partnerships, collaborative mechanisms, and the creation of new career paths will be critical to build momentum in these exciting times. 10.1016/j.cell.2023.09.023
Brain inflammation co-localizes highly with tau in mild cognitive impairment due to early-onset Alzheimer's disease. Brain : a journal of neurology Brain inflammation, with an increased density of microglia and macrophages, is an important component of Alzheimer's disease (AD) and a potential therapeutic target. However, it is incompletely characterized, particularly in patients whose disease begins before the age of 65 years and, thus, have few co-pathologies. Inflammation has been usefully imaged with translocator protein (TSPO) positron emission tomography (PET), but most inflammation PET tracers cannot image subjects with a low-binder TSPO rs6971 genotype. In an important development, participants with any TSPO genotype can be imaged with a novel tracer, [11C]ER176, that has a high binding potential and a more favorable metabolite profile than other TSPO tracers currently available. We applied [11C]ER176 to detect brain inflammation in mild cognitive impairment (MCI) caused by early-onset AD. Furthermore, we sought to correlate the brain localization of inflammation, volume loss, elevated Aβ and tau. We studied brain inflammation in 25 patients with early-onset amnestic MCI (average age 59 ± 4.5 years, 10 women) and 23 healthy controls (average age 65 ± 6.0 years, 12 women), both groups with a similar proportion of all three TSPO-binding affinities. [11C]ER176 total distribution volume (VT), obtained with an arterial input function, was compared across patients and controls using voxel-wise and region-wise analyses. In addition to inflammation PET, most MCI patients had Aβ (n=23), and tau PET (n=21). For Aβ and tau tracers, standard uptake value ratios (SUVRs) were calculated using cerebellar grey matter as region of reference. Regional correlations among the three tracers were determined. Data were corrected for partial volume effect. Cognitive performance was studied with standard neuropsychological tools. In MCI caused by early-onset AD, there was inflammation in the default network, reaching statistical significance in precuneus and lateral temporal and parietal association cortex bilaterally, and in the right amygdala. Topographically, inflammation co-localized most strongly with tau (r= 0.63 ± 0.24). This correlation was higher than the co-localization of Aβ with tau (r= 0.55±0.25) and of inflammation with Aβ (0.43±0.22). Inflammation co-localized least with atrophy (-0.29±0.26). These regional correlations could be detected in participants with any of the three rs6971 TSPO polymorphisms. Inflammation in AD-related regions correlated with impaired cognitive scores. Our data highlight the importance of inflammation, a potential therapeutic target, in the AD process. Furthermore, they support the notion that, as shown in experimental tissue and animal models, the propagation of tau in humans is associated with brain inflammation. 10.1093/brain/awae234
Suppressing UBE2N ameliorates Alzheimer's disease pathology through the clearance of amyloid beta. Alzheimer's & dementia : the journal of the Alzheimer's Association INTRODUCTION:Aging is one of the risk factors for the early onset of Alzheimer's disease (AD). We previously discovered that the age-dependent increase in Ubiquitin Conjugating Enzyme E2 N (UBE2N) plays a role in the accumulation of misfolded proteins through K63 ubiquitination, which has been linked to AD pathogenesis. However, the impact of UBE2N on amyloid pathology and clearance has remained unknown. RESULTS:We observed the elevated UBE2N during the amyloid beta (Aβ) generation in the brains of 5×FAD, APP/PS1 mice, and patients with AD, in comparison to healthy individuals. UBE2N overexpression exacerbated amyloid deposition in 5×FAD mice and senescent monkeys, whereas knocking down UBE2N via CRISPR/Cas9 reduced Aβ generation and cognitive deficiency. Moreover, pharmacological inhibition of UBE2N ameliorated Aβ pathology and subsequent transcript defects in 5×FAD mice. DISCUSSION:We have discovered that age-dependent expression of UBE2N is a critical regulator of AD pathology. Our findings suggest that UBE2N could serve as a potential pharmacological target for the advancement of AD therapeutics. HIGHLIGHTS:Ubiquitin Conjugating Enzyme E2 N (UBE2N) level was elevated during amyloid beta (Aβ) deposition in AD mouse and patients' brains. UBE2N exacerbated Aβ generation in the AD mouse and senescent monkey. Drug inhibition of UBE2N ameliorated Aβ pathology and cognitive deficiency. 10.1002/alz.14122
The Bayesian approach for real-world implementation of plasma p-tau217 in tertiary care memory clinics in Thailand. Alzheimer's & dementia : the journal of the Alzheimer's Association INTRODUCTION:Plasma phosphorylated tau (p-tau)217 is a promising biomarker for Alzheimer's disease (AD) diagnosis, but its clinical implementation remains challenging. We propose a strategy based on Bayes' theorem and test it in real-life memory clinics. METHODS:Memory clinic patients were evaluated by neurocognitive specialists for prespecified diagnosis and subsequently underwent blood collection for p-tau217, cerebrospinal fluid, or amyloid positron emission tomography. Using cross-validation, the Bayesian approach (pretest probability × individualized likelihood ratio) was compared to other models for AD diagnosis. RESULTS:The Bayesian strategy demonstrated an area under the receiver operating characteristic curve (AUC) of 0.98 (95% confidence interval [CI]: 0.96-1.0), significantly outperforming multivariable logistic regression (p-tau217, age, apolipoprotein E; AUC 0.95, p = 0.024) and p-tau217 alone (AUC = 0.94, p = 0.007). When applying the two-threshold approach, the Bayesian strategy yielded an accuracy of 0.94 (95% CI: 0.88-1.0) without requiring confirmatory tests in 62.9% of the iterations. DISCUSSION:The Bayesian strategy offers an effective and flexible approach to address the limitations of plasma p-tau217 in clinical practice. HIGHLIGHTS:Incorporating pretest probability into the interpretation of plasma phosphorylated tau (p-tau)217 improves the diagnostic performance significantly. The strategy could obviate the need for confirmatory testing in most of the patients. Plasma p-tau217 proves useful as a biomarker for Alzheimer's disease in low- and middle-income country such as Thailand. 10.1002/alz.14138
Neurovascular coupling, functional connectivity, and cerebrovascular endothelial extracellular vesicles as biomarkers of mild cognitive impairment. Alzheimer's & dementia : the journal of the Alzheimer's Association INTRODUCTION:Mild cognitive impairment (MCI) is a prodromal stage of dementia. Understanding the mechanistic changes from healthy aging to MCI is critical for comprehending disease progression and enabling preventative intervention. METHODS:Patients with MCI and age-matched controls (CN) were administered cognitive tasks during functional near-infrared spectroscopy (fNIRS) recording, and changes in plasma levels of extracellular vesicles (EVs) were assessed using small-particle flow cytometry. RESULTS:Neurovascular coupling (NVC) and functional connectivity (FC) were decreased in MCI compared to CN, prominently in the left-dorsolateral prefrontal cortex (LDLPFC). We observed an increased ratio of cerebrovascular endothelial EVs (CEEVs) to total endothelial EVs in patients with MCI compared to CN, correlating with structural MRI small vessel ischemic damage in MCI. LDLPFC NVC, CEEV ratio, and LDLPFC FC had the highest feature importance in the random Forest group classification. DISCUSSION:NVC, CEEVs, and FC predict MCI diagnosis, indicating their potential as markers for MCI cerebrovascular pathology. HIGHLIGHTS:Neurovascular coupling (NVC) is impaired in mild cognitive impairment (MCI). Functional connectivity (FC) compensation mechanism is lost in MCI. Cerebrovascular endothelial extracellular vesicles (CEEVs) are increased in MCI. CEEV load strongly associates with cerebral small vessel ischemic lesions in MCI. NVC, CEEVs, and FC predict MCI diagnosis over demographic and comorbidity factors. 10.1002/alz.14072
Nanoscale flow cytometry-based quantification of blood-based extracellular vesicle biomarkers distinguishes MCI and Alzheimer's disease. Alzheimer's & dementia : the journal of the Alzheimer's Association INTRODUCTION:Accurate testing for Alzheimer's disease (AD) represents a crucial step for therapeutic advancement. Currently, tests are expensive and require invasive sampling or radiation exposure. METHODS:We developed a nanoscale flow cytometry (nFC)-based assay of extracellular vesicles (EVs) to screen biomarkers in plasma from mild cognitive impairment (MCI), AD, or controls. RESULTS:Circulating amyloid beta (Aβ), tau, phosphorylated tau (p-tau)181, p-tau231, p-tau217, p-tauS235, ubiquitin, and lysosomal-associated membrane protein 1-positive EVs distinguished AD samples. p-tau181, p-tau217, p-tauS235, and ubiquitin-positive EVs distinguished MCI samples. The most sensitive marker for AD distinction was p-tau231, with an area under the receiver operating characteristic curve (AUC) of 0.96 (sensitivity 0.95/specificity 1.0) improving to an AUC of 0.989 when combined with p-tauS235. DISCUSSION:This nFC-based assay accurately distinguishes MCI and AD plasma without EV isolation, offering a rapid approach requiring minute sample volumes. Incorporating nFC-based measurements in larger populations and comparison to "gold standard" biomarkers is an exciting next step for developing AD diagnostic tools. HIGHLIGHTS:Extracellular vesicles represent promising biomarkers of Alzheimer's disease (AD) that can be measured in the peripheral circulation. This study demonstrates the utility of nanoscale flow cytometry for the measurement of circulating extracellular vesicles (EVs) in AD blood samples. Multiple markers including amyloid beta, tau, phosphorylated tau (p-tau)181, p-tau231, p-tau217, and p-tauS235 accurately distinguished AD samples from healthy controls. Future studies should expand blood and cerebrospinal fluid-based EV biomarker development using nanoflow cytometry approaches. 10.1002/alz.14087
Correlations between plasma markers and brain Aβ deposition across the AD continuum: Evidence from SILCODE. Alzheimer's & dementia : the journal of the Alzheimer's Association BACKGROUND:Previous studies have found that Alzheimer's disease (AD)-related plasma markers are associated with amyloid beta (Aβ) deposition, but the change of this association in different Aβ pathological stages remains unclear. METHODS:Data were obtained from the SILCODE. According to the standardized uptake value ratio (SUVR) and Aβ stage classification, correlation analysis was performed among plasma biomarkers, and voxel/SUVR values in the regions of interest (ROI) and clinical scale information, respectively. Mediation analysis was used to study the possible pathways. RESULTS:The proportion of cognitively normal (CN) and subjective cognitive decline (SCD) was the highest in stages A0 to 1, while in stages A2 to 4, the proportion of mild cognitive impairment (MCI) and AD increased. Plasma phosphorylated tau (p-tau)181 and glial fibrillary acidic protein (GFAP) levels were significantly lower in stage A0 compared to the later phases. Two pathways demonstrated fully mediated effects: positron emission tomography (PET) SUVR-plasma p-tau181-Mini-Mental State Examination (MMSE) and PET SUVR-plasma GFAP-MMSE. DISCUSSION:This study demonstrated the role of plasma biomarkers in the early stage of AD, especially in SCD, from both the clinical diagnosis and Aβ stage dimensions. HIGHLIGHTS:Plasma ptau181 and GFAP level serve as indicators of early Alzheimer's disease and the pathologic Aβ staging classification. A possible ceiling effect of GFAP was observed in the mid-to-late stages of the AD course. This study confirms the role of AD plasma markers in promoting Aβ deposition at an early stage, particularly in females with subjective cognitive decline(SCD). The overlapping brain regions of plasma p-tau181, GFAP, and neurofilament light for Aβ deposition in the brain in early AD were distributed across various regions, including the posterior cingulate gyrus, rectus gyrus, and inferior temporal gyrus. 10.1002/alz.14084
Predicting Longitudinal Cognitive Decline and Alzheimer's Conversion in Mild Cognitive Impairment Patients Based on Plasma Biomarkers. Cells The increasing burden of Alzheimer's disease (AD) emphasizes the need for effective diagnostic and therapeutic strategies. Despite available treatments targeting amyloid beta (Aβ) plaques, disease-modifying therapies remain elusive. Early detection of mild cognitive impairment (MCI) patients at risk for AD conversion is crucial, especially with anti-Aβ therapy. While plasma biomarkers hold promise in differentiating AD from MCI, evidence on predicting cognitive decline is lacking. This study's objectives were to evaluate whether plasma protein biomarkers could predict both cognitive decline in non-demented individuals and the conversion to AD in patients with MCI. This study was conducted as part of the Korean Longitudinal Study on Cognitive Aging and Dementia (KLOSCAD), a prospective, community-based cohort. Participants were based on plasma biomarker availability and clinical diagnosis at baseline. The study included MCI (n = 50), MCI-to-AD (n = 21), and cognitively unimpaired (CU, n = 40) participants. Baseline plasma concentrations of six proteins-total tau (tTau), phosphorylated tau at residue 181 (pTau181), amyloid beta 42 (Aβ42), amyloid beta 40 (Aβ40), neurofilament light chain (NFL), and glial fibrillary acidic protein (GFAP)-along with three derivative ratios (pTau181/tTau, Aβ42/Aβ40, pTau181/Aβ42) were analyzed to predict cognitive decline over a six-year follow-up period. Baseline protein biomarkers were stratified into tertiles (low, intermediate, and high) and analyzed using a linear mixed model (LMM) to predict longitudinal cognitive changes. In addition, Kaplan-Meier analysis was performed to discern whether protein biomarkers could predict AD conversion in the MCI subgroup. This prospective cohort study revealed that plasma NFL may predict longitudinal declines in Mini-Mental State Examination (MMSE) scores. In participants categorized as amyloid positive, the NFL biomarker demonstrated predictive performance for both MMSE and total scores of the Korean version of the Consortium to Establish a Registry for Alzheimer's Disease Assessment Packet (CERAD-TS) longitudinally. Additionally, as a baseline predictor, GFAP exhibited a significant association with cross-sectional cognitive impairment in the CERAD-TS measure, particularly in amyloid positive participants. Kaplan-Meier curve analysis indicated predictive performance of NFL, GFAP, tTau, and Aβ42/Aβ40 on MCI-to-AD conversion. This study suggests that plasma GFAP in non-demented participants may reflect baseline cross-sectional CERAD-TS scores, a measure of global cognitive function. Conversely, plasma NFL may predict longitudinal decline in MMSE and CERAD-TS scores in participants categorized as amyloid positive. Kaplan-Meier curve analysis suggests that NFL, GFAP, tTau, and Aβ42/Aβ40 are potentially robust predictors of future AD conversion. 10.3390/cells13131085
The Effects of Dietary Intervention and Macrophage-Activating Factor Supplementation on Cognitive Function in Elderly Users of Outpatient Rehabilitation. Nutrients BACKGROUND:Age, genetic, and environmental factors are noted to contribute to dementia risk. Neuroplasticity, protection from degeneration and cell death, and early intervention are desirable for preventing dementia. The linkage between neurons and microglia has been a research focus. In this study, we examined the effects of dietary modification (a reduction in advanced glycation end products [AGEs]) and macrophage-activating factor (MAF; a macrophage regulator) supplementation on cognitive function in elderly participants undergoing rehabilitation. METHODS:Participants were older than 60 years of age and had been attending a daycare rehabilitation facility for at least three months without cognitive dysfunction, severe anemia, terminal cancer, or neurodegenerative diseases such as Parkinson's disease. The exercise protocol at the rehabilitation facility was not changed during the study period. Forty-three participates were randomly divided into three groups: a control group receiving placebo, a group receiving dietary guidance, and a group receiving dietary guidance and MAF supplementation. The amyloid-β40/42 ratio, dietary AGE intake, plasma AGE levels, dietary caloric intake, and mild cognitive impairment (MCI) screen test were evaluated. RESULTS:Four participants withdrew from the study. MCI screening scores significantly improved in the MAF supplementation group, especially after 6 months. Dietary modulation was also more effective than placebo at improving cognitive function after 12 months. Only the control group exhibited significantly increased plasma AGEs while the dietary modulation and MAF supplementation groups showed no change in plasma AGEs after 12 months. CONCLUSIONS:MAF supplementation improved cognitive function, especially after 6 months, in elderly people undergoing rehabilitation. Dietary modulation was also effective for improving cognitive function after 12 months compared to that in the control group. It was difficult to supervise meals during dietary guidance at the daycare service. However, simple guidance could show improvements in cognitive function through diet. 10.3390/nu16132078
Association between reduced plasma BDNF concentration and MMSE scores in both chronic schizophrenia and mild cognitive impairment. Progress in neuro-psychopharmacology & biological psychiatry Reduced brain derived neurotrophic factor (BDNF) concentration is reported to be associated with a cognitive decline in schizophrenia, depending on the stage of the disease. Aim of the study was to examine the possible association between plasma BDNF and cognitive decline in chronic stable schizophrenia and mild cognitive impairment (MCI). The study included 123 inpatients of both sexes with schizophrenia, 123 patients with MCI and 208 healthy control subjects. Cognitive abilities were assessed using mini mental state examination (MMSE), Clock Drawing test (CDT) and cognitive subscale of the Positive and Negative Syndrome Scale (PANSS). Plasma BDNF concentration was determined using ELISA. BDNF concentration was lower in patients with schizophrenia and MCI compared to age-matched healthy controls and was similar in carriers of different BDNF Val/66Met genotypes. The MMSE and CDT scores were lower in patients with schizophrenia compared to healthy controls and subjects with MCI. Reduced plasma BDNF was significantly associated with lower MMSE scores in all subjects. BDNF concentration in patients with schizophrenia was not affected by clinical and demographic factors. BDNF Val66Met polymorphism was not associated with the MMSE scores in all participants. Further studies should include longitudinal follow-up and other cognitive scales to confirm these results and offer cognition-improving strategies to prevent cognitive decline in chronic schizophrenia. 10.1016/j.pnpbp.2024.111086
The diagnostic and prognostic capabilities of plasma biomarkers in Alzheimer's disease. Alzheimer's & dementia : the journal of the Alzheimer's Association INTRODUCTION:This study investigated the diagnostic and disease-monitoring potential of plasma biomarkers in mild cognitive impairment (MCI) and Alzheimer's disease (AD) dementia and cognitively unimpaired (CU) individuals. METHODS:Plasma was analyzed using Simoa assays from 99 CU, 107 MCI, and 103 AD dementia participants. RESULTS:Phosphorylated-tau181 (P-tau181), neurofilament light, amyloid-β (Aβ42/40), Total-tau and Glial fibrillary acidic protein were altered in AD dementia but P-tau181 significantly outperformed all biomarkers in differentiating AD dementia from CU (area under the curve [AUC] = 0.91). P-tau181 was increased in MCI converters compared to non-converters. Higher P-tau181 was associated with steeper cognitive decline and gray matter loss in temporal regions. Longitudinal change of P-tau181 was strongly associated with gray matter loss in the full sample and with Aβ measures in CU individuals. DISCUSSION:P-tau181 detected AD at MCI and dementia stages and was strongly associated with cognitive decline and gray matter loss. These findings highlight the potential value of plasma P-tau181 as a non-invasive and cost-effective diagnostic and prognostic biomarker in AD. 10.1002/alz.12283
Plasma Aβ42/40 ratio, p-tau181, GFAP, and NfL across the Alzheimer's disease continuum: A cross-sectional and longitudinal study in the AIBL cohort. Alzheimer's & dementia : the journal of the Alzheimer's Association INTRODUCTION:Plasma amyloid beta (Aβ)1-42/Aβ1-40 ratio, phosphorylated-tau181 (p-tau181), glial fibrillary acidic protein (GFAP), and neurofilament light (NfL) are putative blood biomarkers for Alzheimer's disease (AD). However, head-to-head cross-sectional and longitudinal comparisons of the aforementioned biomarkers across the AD continuum are lacking. METHODS:Plasma Aβ1-42, Aβ1-40, p-tau181, GFAP, and NfL were measured utilizing the Single Molecule Array (Simoa) platform and compared cross-sectionally across the AD continuum, wherein Aβ-PET (positron emission tomography)-negative cognitively unimpaired (CU Aβ-, n = 81) and mild cognitive impairment (MCI Aβ-, n = 26) participants were compared with Aβ-PET-positive participants across the AD continuum (CU Aβ+, n = 39; MCI Aβ+, n = 33; AD Aβ+, n = 46) from the Australian Imaging, Biomarker & Lifestyle Flagship Study of Ageing (AIBL) cohort. Longitudinal plasma biomarker changes were also assessed in MCI (n = 27) and AD (n = 29) participants compared with CU (n = 120) participants. In addition, associations between baseline plasma biomarker levels and prospective cognitive decline and Aβ-PET load were assessed over a 7 to 10-year duration. RESULTS:Lower plasma Aβ1-42/Aβ1-40 ratio and elevated p-tau181 and GFAP were observed in CU Aβ+, MCI Aβ+, and AD Aβ+, whereas elevated plasma NfL was observed in MCI Aβ+ and AD Aβ+, compared with CU Aβ- and MCI Aβ-. Among the aforementioned plasma biomarkers, for models with and without AD risk factors (age, sex, and apolipoprotein E (APOE) ε4 carrier status), p-tau181 performed equivalent to or better than other biomarkers in predicting a brain Aβ-/+ status across the AD continuum. However, for models with and without the AD risk factors, a biomarker panel of Aβ1-42/Aβ1-40, p-tau181, and GFAP performed equivalent to or better than any of the biomarkers alone in predicting brain Aβ-/+ status across the AD continuum. Longitudinally, plasma Aβ1-42/Aβ1-40, p-tau181, and GFAP were altered in MCI compared with CU, and plasma GFAP and NfL were altered in AD compared with CU. In addition, lower plasma Aβ1-42/Aβ1-40 and higher p-tau181, GFAP, and NfL were associated with prospective cognitive decline and lower plasma Aβ1-42/Aβ1-40, and higher p-tau181 and GFAP were associated with increased Aβ-PET load prospectively. DISCUSSION:These findings suggest that plasma biomarkers are altered cross-sectionally and longitudinally, along the AD continuum, and are prospectively associated with cognitive decline and brain Aβ-PET load. In addition, although p-tau181 performed equivalent to or better than other biomarkers in predicting an Aβ-/+ status across the AD continuum, a panel of biomarkers may have superior Aβ-/+ status predictive capability across the AD continuum. HIGHLIGHTS:Area under the curve (AUC) of p-tau181 ≥ AUC of Aβ42/40, GFAP, NfL in predicting PET Aβ-/+ status (Aβ-/+).  AUC of Aβ42/40+p-tau181+GFAP panel ≥ AUC of Aβ42/40/p-tau181/GFAP/NfL for Aβ-/+.  Longitudinally, Aβ42/40, p-tau181, and GFAP were altered in MCI versus CU.  Longitudinally, GFAP and NfL were altered in AD versus CU.  Aβ42/40, p-tau181, GFAP, and NfL are associated with prospective cognitive decline.  Aβ42/40, p-tau181, and GFAP are associated with increased PET Aβ load prospectively. 10.1002/alz.12724
Subjective cognitive complaints and blood biomarkers of neurodegenerative diseases: a longitudinal cohort study. Alzheimer's research & therapy BACKGROUND:Subjective cognitive complaints (SCC) have been mostly studied in the context of Alzheimer's disease in memory clinic settings. The potential of combining SCC with genetic information and blood biomarkers of neurodegenerative diseases for risk assessment of dementia and depression in the absence of dementia among community-dwelling older adults has so far not been explored. METHODS:Data were based on a population-based cohort of 6357 participants with a 17-year follow-up (ESTHER study) and a clinic-based cohort of 422 patients. Participants of both cohorts were grouped according to the diagnosis of dementia (yes/no) and the diagnosis of depression in the absence of dementia (yes/no). Participants without dementia included both cognitively unimpaired participants and cognitively impaired participants. Genetic information (APOE ε4 genotype) and blood-based biomarkers of neurodegenerative diseases (glial fibrillary acidic protein; GFAP, neurofilament light chain; NfL, phosphorylated tau181; p-tau181) were available in the ESTHER study and were determined with Simoa Technology in a nested case-control design. Logistic regression models adjusted for relevant confounders were run for the outcomes of all-cause dementia and depression in the absence of dementia. RESULTS:The results showed that persistent SCC were associated both with increased risk of all-cause dementia and of depression without dementia, independently of the diagnostic setting. However, the results for the ESTHER study also showed that the combination of subjective complaints with APOE ε4 and with increased GFAP concentrations in the blood yielded a substantially increased risk of all-cause dementia (OR 5.35; 95%CI 3.25-8.81, p-value < 0.0001 and OR 7.52; 95%CI 2.79-20.29, p-value < 0.0001, respectively) but not of depression. Associations of NfL and p-tau181 with risk of all-cause dementia and depression were not statistically significant, either alone or in combination with SCC, but increased concentrations of p-tau181 seemed to be associated with an increased risk for depression. CONCLUSION:In community and clinical settings, SCC predict both dementia and depression in the absence of dementia. The addition of GFAP could differentiate between the risk of all-cause dementia and the risk of depression among individuals without dementia. 10.1186/s13195-023-01341-3
Blood Biomarkers Discriminate Cerebral Amyloid Status and Cognitive Diagnosis when Collected with ACD-A Anticoagulant. Current Alzheimer research BACKGROUND:The development of biomarkers that are easy to collect, process, and store is a major goal of research on current Alzheimer's Disease (AD) and underlies the growing interest in plasma biomarkers. Biomarkers with these qualities will improve diagnosis and allow for better monitoring of therapeutic interventions. However, blood collection strategies have historically differed between studies. We examined the ability of various ultrasensitive plasma biomarkers to predict cerebral amyloid status in cognitively unimpaired individuals when collected using acid citrate dextrose (ACD). We then examined the ability of these biomarkers to predict cognitive impairment independent of amyloid status. METHODS:Using a cross-sectional study design, we measured amyloid beta 42/40 ratio, pTau-181, neurofilament-light, and glial fibrillary acidic protein using the Quanterix Simoa® HD-X platform. To evaluate the discriminative accuracy of these biomarkers in determining cerebral amyloid status, we used both banked plasma and 18F-AV45 PET cerebral amyloid neuroimaging data from 140 cognitively unimpaired participants. We further examined their ability to discriminate cognitive status by leveraging data from 42 cognitively impaired older adults. This study is the first, as per our knowledge, to examine these specific tests using plasma collected using acid citrate dextrose (ACD), as well as the relationship with amyloid PET status. RESULTS:Plasma AB42/40 had the highest AUC (0.833, 95% C.I. 0.767-0.899) at a cut-point of 0.0706 for discriminating between the two cerebral amyloid groups (sensitivity 76%, specificity 78.5%). Plasma NFL at a cut-point of 20.58pg/mL had the highest AUC (0.908, 95% CI 0.851- 0.966) for discriminating cognitive impairment (sensitivity 84.8%, specificity 89.9%). The addition of age and apolipoprotein e4 status did not improve the discriminative accuracy of these biomarkers. CONCLUSION:Our results suggest that the Aβ42/40 ratio is useful in discriminating clinician-rated elevated cerebral amyloid status and that NFL is useful for discriminating cognitive impairment status. These findings reinforce the growing body of evidence regarding the general utility of these biomarkers and extend their utility to plasma collected in a non-traditional anticoagulant. 10.2174/0115672050271523231111192725
The Effect of Iron-Fortified Lentils on Blood and Cognitive Status among Adolescent Girls in Bangladesh. Nutrients BACKGROUND:Iron deficiency is highly prevalent in South Asia, especially among women and children in Bangladesh. Declines in cognitive performance are among the many functional consequences of iron deficiency. OBJECTIVE:We tested the hypothesis that, over the course of a 4-month iron fortification trial, cognitive performance would improve, and that improvement would be related to improvements in iron status. METHODS:Participants included 359 adolescent girls attending Bangladesh Rural Advancement Committee (BRAC) clubs as a subsample of a larger double-blind, cluster-randomized community trial in which participants were assigned to one of three conditions: a condition in which no lentils were supplied (NL, n = 118, but which had the usual intake of lentils), a control (non-fortified) lentil condition (CL, n = 124), and an iron-fortified lentil condition (FL, n = 117). In the FL and CL conditions, approximately 200 g of cooked lentils were served five days per week for a total of 85 feeding days. In addition to biomarkers of iron status, five cognitive tasks were measured at baseline (BL) and endline (EL): simple reaction time task (SRT), go/no-go task (GNG), attentional network task (ANT), the Sternberg memory search Task (SMS), and a cued recognition task (CRT). RESULTS:Cognitive performance at EL was significantly better for those in the FL relative to the CL and NL conditions, with this being true for at least one variable in each task, except for the GNG. In addition, there were consistent improvements in cognitive performance for those participants whose iron status improved. Although there were overall declines in iron status from BL to EL, the declines were smallest for those in the FL condition, and iron status was significantly better for those in FL condition at EL, relative to those in the CL and NL conditions. CONCLUSIONS:the provision of iron-fortified lentils provided a protective effect on iron status in the context of declines in iron status and supported higher levels of cognitive performance for adolescent girls at-risk of developing iron deficiency. 10.3390/nu15235001
Cerebrospinal and Blood Biomarkers in Alzheimer's Disease: Did Mild Cognitive Impairment Definition Affect Their Clinical Usefulness? International journal of molecular sciences Despite Alzheimer's Disease (AD) being known from the times of Alois Alzheimer, who lived more than one century ago, many aspects of the disease are still obscure, including the pathogenesis, the clinical spectrum definition, and the therapeutic approach. Well-established biomarkers for AD come from the histopathological hallmarks of the disease, which are Aβ and phosphorylated Tau protein aggregates. Consistently, cerebrospinal fluid (CSF) Amyloid β (Aβ) and phosphorylated Tau level measurements are currently used to detect AD presence. However, two central biases affect these biomarkers. Firstly, incomplete knowledge of the pathogenesis of diseases legitimates the search for novel molecules that, reasonably, could be expressed by neurons and microglia and could be detected in blood simpler and earlier than the classical markers and in a higher amount. Further, studies have been performed to evaluate whether CSF biomarkers can predict AD onset in Mild Cognitive Impairment (MCI) patients. However, the MCI definition has changed over time. Hence, the studies on MCI patients seem to be biased at the beginning due to the imprecise enrollment and heterogeneous composition of the miscellaneous MCI subgroup. Plasma biomarkers and novel candidate molecules, such as microglia biomarkers, have been tentatively investigated and could represent valuable targets for diagnosing and monitoring AD. Also, novel AD markers are urgently needed to identify molecular targets for treatment strategies. This review article summarizes the main CSF and blood AD biomarkers, underpins their advantages and flaws, and mentions novel molecules that can be used as potential biomarkers for AD. 10.3390/ijms242316908
Serum proinsulin levels as peripheral blood biomarkers in patients with cognitive impairment. Scientific reports Insulin has long been associated with dementia. Insulin affecting the clearance of amyloid-β peptide and phosphorylation of tau in the CNS. Proinsulin is a precursor of insulin and its elevated serum levels are associated with peripheral insulin resistance that may reduce brain insulin levels. Our study aimed to assess differences in serum proinsulin levels between normal and cognitive impairment groups. Prospective recruitment of elderly participants was initiated from October 2019 to September 2023. Patients were divided into "cognitive impairment" and "normal cognition" group. All participants had blood drawn and serum proinsulin was measured at baseline and 12 months. Neurocognitive testing was performed every 6 months. A total of 121 participants were recruited. Seventy-seven were in the normal cognition group and 44 in the cognitive impairment group. The glycemic control and prevalence of diabetes type 2 was similar between groups. Baseline serum proinsulin levels were higher in the cognitively impaired group compared to the normal group at baseline (p = 0.019) and correlated with worse cognitive scores. We identified cognitive status, age, and BMI as potential factors associated with variations in baseline proinsulin levels. Given the complex interplay between insulin and dementia pathogenesis, serum biomarkers related to insulin metabolism may exhibit abnormalities in cognitive impaired patients. Here we present the proinsulin levels in individuals with normal cognitive function versus those with cognitive impairment and found a significant difference. This observation may help identifying non-diabetic patients suitable for treatment with novel AD drugs that related to insulin pathway. 10.1038/s41598-023-49479-2
Blood-based biomarkers for Alzheimer's disease and cognitive function from mid- to late life. Alzheimer's & dementia : the journal of the Alzheimer's Association INTRODUCTION:We investigated associations of Alzheimer's disease (AD) serum biomarkers with longitudinal changes in cognitive function from mid- to late life among women. METHODS:The study population included 192 women with the median age of 53.3 years at baseline, from the Study of Women's Health Across the Nation Michigan Cohort, followed up over 14 years. Associations between baseline serum amyloid β (Aβ)42, the Aβ42/40 ratio, phosphorylated tau181 (p-tau181), and total tau with longitudinal changes in cognition were evaluated using linear mixed effects models. RESULTS:After adjusting for confounders, lower Aβ42/40 ratios were associated with faster declines in the Digit Span Backward Test. Higher p-tau181 also showed a borderline statistically significant association with more rapid decline in the Symbol Digit Modalities Test. DISCUSSION:Our findings suggest that mid-life serum AD biomarkers could be associated with accelerated cognitive decline from mid- to late life in women. Future studies with larger samples are needed to validate and extend our findings. HIGHLIGHTS:This study investigates midlife serum AD biomarkers on longitudinal cognitive function changes in women. Mid-life serum AD biomarkers are associated with accelerated cognitive decline. A decrease in the Aβ42/40 ratio was associated with a faster decline in the DSB score. A higher p-tau181 concentration was associated with a faster decline in the SDMT score. 10.1002/alz.13583
Gut microbiota in combination with blood metabolites reveals characteristics of the disease cluster of coronary artery disease and cognitive impairment: a Mendelian randomization study. Frontiers in immunology Background:The coexistence of coronary artery disease (CAD) and cognitive impairment has become a common clinical phenomenon. However, there is currently limited research on the etiology of this disease cluster, discovery of biomarkers, and identification of precise intervention targets. Methods:We explored the causal connections between gut microbiota, blood metabolites, and the disease cluster of CAD combined with cognitive impairment through two-sample Mendelian randomization (TSMR). Additionally, we determine the gut microbiota and blood metabolites with the strongest causal associations using Bayesian model averaging multivariate Mendelian randomization (MR-BMA) analysis. Furthermore, we will investigate the mediating role of blood metabolites through a two-step Mendelian randomization design. Results:We identified gut microbiota that had significant causal associations with cognitive impairment. Additionally, we also discovered blood metabolites that exhibited significant causal associations with both CAD and cognitive impairment. According to the MR-BMA results, the free cholesterol to total lipids ratio in large very low density lipoprotein (VLDL) was identified as the key blood metabolite significantly associated with CAD. Similarly, the cholesteryl esters to total lipids ratio in small VLDL emerged as the primary blood metabolite with a significant causal association with dementia with lewy bodies (DLB). For the two-step Mendelian randomization analysis, we identified blood metabolites that could potentially mediate the association between genus Butyricicoccus and CAD in the potential causal links. Conclusion:Our study utilized Mendelian randomization (MR) to identify the gut microbiota features and blood metabolites characteristics associated with the disease cluster of CAD combined with cognitive impairment. These findings will provide a meaningful reference for the identification of biomarkers for the disease cluster of CAD combined with cognitive impairment as well as the discovery of targets for intervention to address the problems in the clinic. 10.3389/fimmu.2023.1308002
The polysaccharides from the fruits of Lycium barbarum ameliorate high-fat and high-fructose diet-induced cognitive impairment via regulating blood glucose and mediating gut microbiota. International journal of biological macromolecules High-fat and high-fructose diet (HFFD) consumption can induce cognitive dysfunction and gut microbiota disorder. In the present study, the effects of the polysaccharides from the fruits of Lycium barbarum L. (LBPs) on HFFD-induced cognitive deficits and gut microbiota dysbiosis were investigated. The results showed that intervention of LBPs (200 mg/kg/day) for 14 weeks could significantly prevent learning and memory deficits in HFFD-fed mice, evidenced by a reduction of latency and increment of crossing parameters of platform quadrant in Morris water maze test. Moreover, oral administration of LBPs enhanced the expression of postsynaptic density protein 95 and brain-derived neurotrophic factor and reduced the activation of glial cells in hippocampus. Besides, LBPs treatment enriched the relative abundances of Allobaculum and Lactococcus and reduced the relative abundance of Proteobacteria in gut bacterial community of HFFD-fed mice, accompanied by increased levels of short-chain fatty acids (SCFAs) as well as expression of associated G protein-coupled receptors. Furthermore, LBPs intervention prevented insulin resistance, obesity and colonic inflammation. Finally, a significant correlation was observed among neuroinflammation associated parameters, gut microbiota and SCFAs through Pearson correlation analysis. Collectively, these findings suggested that the regulation of gut microbiota might be the potential mechanism of LBPs on preventing cognitive dysfunction induced by HFFD. 10.1016/j.ijbiomac.2023.129036
Impact of Codonopsis decoction on cerebral blood flow and cognitive function in rats with chronic cerebral ischemia. Journal of ethnopharmacology ETHNOPHARMACOLOGICAL RELEVANCE:Some species of Codonopsis (local name in Shanxi: Ludang) have long demonstrated high medicinal and economic value. Radix Codonopsis, the dried root of Codonopsis pilosula (Franch.) Nannf. (C. pilosula), Codonopsis pilosula var. modesta (Nannf.) L.D.Shen (C. pilosula var. modesta), or Codonopsis pilosula subsp. tangshen (Oliv.) D.Y.Hong (C. pilosula subsp. tangshen), was recorded as a traditional Chinese medicine back in the Qing Dynasty in Ben Cao Cong Xin. Radix Codonopsis, a valuable medicinal herb certified by the Chinese National Geographic Indication, is known for invigorating the spleen, nourishing the lungs, promoting blood circulation, and generating fluid properties. Given that chronic cerebral ischemia (CCI) is often associated with the symptoms of qi and blood deficiencies and fluid depletion, we explored the potential of Codonopsis decoction in the treatment of CCI. STUDY AIMS:We investigated the effects of Codonopsis decoction on cerebral blood flow (CBF) and cognitive function in rats with bilateral carotid artery occlusion after surgery; explored whether Codonopsis decoction alleviates pathological injuries in brain tissue of rats after 2-VO surgery; and assessed the impact of Codonopsis decoction on the expression of chemokines, hypoxia-inducible factors, and inflammatory mediators in rats after 2-VO surgery. MATERIALS AND METHODS:We used a 2-VO rat model to simulate CCI. We used a laser speckle imaging (LSI) system to observe changes in CBF before and after surgery. The goal was to examine variations in CBF at different time points after 2-VO surgery. For 4 weeks, the rats were orally administered Codonopsis decoction at doses of 2.7, 5.4, and 10.8 g/kg/day, or Ginaton at a dose of 43.2 mg/kg/day. To assess the effect of Codonopsis on cerebral hypoperfusion symptoms in rats, we conducted the Morris water maze (MWM), Barnes maze (BM), and forelimb grip strength tests. Additionally, pathological experiments including hematoxylin and eosin, Nissl, and Luxol fast blue staining were conducted. Furthermore, we used western blotting to detect changes in the levels of proteins such as the chemotactic factor CKLF1 and hypoxia-inducible actor 1-alpha (HIF-1α). RESULTS:One week after 2-VO surgery, cerebral arterial blood supply in the rats rapidly reduced to approximately 43.39% ± 3.53% of the preoperative level. Cerebral cortex perfusion reached its nadir within 24 h of surgery, gradually recovering and stabilizing by the fourth week after surgery. An integration of the results from the BM, MWM, and grip strength tests, which assessed cognitive function and forelimb strength in rats after 2-VO surgery, unequivocally revealed that Codonopsis treatment significantly reduced the latency period and increased the number of platform crossings in the MWM test. Ginaton exhibited a comparable effect. Moreover, both Codonopsis and Ginaton decreased the number of errors and the time required to locate the target hole in the BM test. Histopathological staining revealed that Codonopsis and Ginaton could ameliorate pathological damage in rats after CCI and reduce the release of factors such as CKLF1 and HIF-1α. CONCLUSION:Codonopsis decoction exerted its protective effects on CCI rats possibly by modulating the levels of chemokines, hypoxia-inducible factors, and neuroinflammatory mediators. 10.1016/j.jep.2023.117585
Alterations in cognitive function and blood biomarkers following transcranial direct current stimulation in patients with amyloid positron emission tomography-positive Alzheimer's disease: a preliminary study. Frontiers in neuroscience Introduction:Alzheimer's disease (AD), the most common form of dementia, is characterized by progressive cognitive decline. To address this, we conducted a randomized, double-blinded, sham-controlled study to investigate the therapeutic potential of transcranial direct current stimulation (tDCS) on patients with amyloid positron emission tomography (PET)- positive AD. Methods:Participants already undergoing pharmacological treatment and testing positive for amyloid PET were divided into Active-tDCS ( = 8) and Sham-tDCS ( = 8) groups. For 12 weeks, participants or their caregivers administered daily bi-frontal tDCS (YMS-201B+, Ybrain Inc., Seongnam, Korea) at home (2 mA, 30 min). Pre- and post-intervention assessments included neuropsychological tests and blood sample measurements for oligomerized beta-amyloid. Results:The Active-tDCS group demonstrated significant improvements in cognitive domains such as language abilities, verbal memory, and attention span and in frontal lobe functions compared to the Sham-tDCS group. Furthermore, the Active-tDCS group showed a marked reduction in post-intervention plasma Aβ oligomerization tendency level, suggesting changes in pivotal AD-associated biomarkers. Discussion:Our results emphasize the potential therapeutic benefits of tDCS for mild AD patients with amyloid PET positivity and stress the urgency for broader research, considering the global challenges of dementia and the need to pursue innovative therapeutic strategies. 10.3389/fnins.2023.1327886