logo logo
Honokiol prevents lung metastasis of triple-negative breast cancer by regulating polarization and recruitment of macrophages. European journal of pharmacology Metastasis is the leading cause of breast cancer-associated death. Lung metastasis commonly occurs in triple-negative breast cancer (TNBC) metastasis, worsening the TNBC prognosis. Considering their role in tumor progression and metastasis, tumor-associated macrophages (TAMs) are essential therapeutic targets in cancer therapy. Previous studies have demonstrated that honokiol inhibits tumor growth and progression. Here we assessed how honokiol inhibits lung metastasis of TNBC by regulating the polarization of macrophages. We found that honokiol decreased the expression of IL-13-triggered M2 markers like CD206, Arg1, and CCL2, preventing the invasion and migration ability of TNBC cells. The activation of signal transducer and activator of transcription STAT6 and STAT3 was significantly suppressed by honokiol in M2 polarized macrophages. Meanwhile, honokiol increased the expression of LPS/IFNγ-induced M1 markers such as CD11c, iNOS, and IL12 by promoting STAT1 phosphorylation. Besides, honokiol decreased both the ratio of M2/M1 macrophages and the expression of the IL-10/IL-12 gene in lung tissues, thereby inhibiting the proliferation and metastasis of murine breast cancer. Moreover, honokiol reduced the infiltration of macrophages to the lung tissue through the CCL2/CCR2 pathways. These results highlight the potential of honokiol in suppressing TNBC tumor progression and lung metastasis by regulating the polarization and recruitment of macrophages. 10.1016/j.ejphar.2023.176076
Inhibition of iNOS as a novel effective targeted therapy against triple-negative breast cancer. Granados-Principal Sergio,Liu Yi,Guevara Maria L,Blanco Elvin,Choi Dong Soon,Qian Wei,Patel Tejal,Rodriguez Angel A,Cusimano Joseph,Weiss Heidi L,Zhao Hong,Landis Melissa D,Dave Bhuvanesh,Gross Steven S,Chang Jenny C Breast cancer research : BCR INTRODUCTION:Triple-negative breast cancer (TNBC) is an aggressive form of breast cancer with no effective targeted therapy. Inducible nitric oxide synthase (iNOS) is associated with poor survival in patients with breast cancer by increasing tumor aggressiveness. This work aimed to investigate the potential of iNOS inhibitors as a targeted therapy for TNBC. We hypothesized that inhibition of endogenous iNOS would decrease TNBC aggressiveness by reducing tumor initiation and metastasis through modulation of epithelial-mesenchymal transition (EMT)-inducing factors. METHODS:iNOS protein levels were determined in 83 human TNBC tissues and correlated with clinical outcome. Proliferation, mammosphere-forming efficiency, migration, and EMT transcription factors were assessed in vitro after iNOS inhibition. Endogenous iNOS targeting was evaluated as a potential therapy in TNBC mouse models. RESULTS:High endogenous iNOS expression was associated with worse prognosis in patients with TNBC by gene expression as well as immunohistochemical analysis. Selective iNOS (1400 W) and pan-NOS (L-NMMA and L-NAME) inhibitors diminished cell proliferation, cancer stem cell self-renewal, and cell migration in vitro, together with inhibition of EMT transcription factors (Snail, Slug, Twist1, and Zeb1). Impairment of hypoxia-inducible factor 1α, endoplasmic reticulum stress (IRE1α/XBP1), and the crosstalk between activating transcription factor 3/activating transcription factor 4 and transforming growth factor β was observed. iNOS inhibition significantly reduced tumor growth, the number of lung metastases, tumor initiation, and self-renewal. CONCLUSIONS:Considering the effectiveness of L-NMMA in decreasing tumor growth and enhancing survival rate in TNBC, we propose a targeted therapeutic clinical trial by re-purposing the pan-NOS inhibitor L-NMMA, which has been extensively investigated for cardiogenic shock as an anti-cancer therapeutic. 10.1186/s13058-015-0527-x