logo logo
NADH elevation during chronic hypoxia leads to VHL-mediated HIF-1α degradation via SIRT1 inhibition. Cell & bioscience BACKGROUND:Under conditions of hypoxia, cancer cells with hypoxia inducible factor-1α (HIF-1α) from heterogeneous tumor cells show greater aggression and progression in an effort to compensate for harsh environmental conditions. Extensive study on the stability of HIF-1α under conditions of acute hypoxia in cancer progression has been conducted, however, understanding of its involvement during the chronic phase is limited. METHODS:In this study, we investigated the effect of SIRT1 on HIF1 stability in a typical chronic hypoxic conditon that maintains cells for 24 h under hypoxia using Western blotting, co-IP, measurement of intracellular NAD + and NADH levels, semi-quantitative RT-PCR analysis, invasion assay, gene knockdown. RESULTS:Here we demonstrated that the high concentration of pyruvate in the medium, which can be easily overlooked, has an effect on the stability of HIF-1α. We also demonstrated that NADH functions as a signal for conveyance of HIF-1α degradation via the SIRT1 and VHL signaling pathway under conditions of chronic hypoxia, which in turn leads to attenuation of hypoxically strengthened invasion and angiogenic activities. A steep increase in the level of NADH occurs during chronic hypoxia, leading to upregulation of acetylation and degradation of HIF-1α via inactivation of SIRT1. Of particular interest, p300-mediated acetylation at lysine 709 of HIF-1α is recogonized by VHL, which leads to degradation of HIF-1α via ubiquitin/proteasome machinary under conditions of chronic hypoxia. In addition, we demonstrated that NADH-elevation-induced acetylation and subsequent degradation of HIF-1α was independent of proline hydroxylation. CONCLUSIONS:Our findings suggest a critical role of SIRT1 as a metabolic sensor in coordination of hypoxic status via regulation of HIF-1α stability. These results also demonstrate the involvement of VHL in degradation of HIF-1α through recognition of PHD-mediated hydroxylation in normoxia and p300-mediated HIF-1α acetylation in hypoxia. 10.1186/s13578-023-01130-3
HIF-1α protects against oxidative stress by directly targeting mitochondria. Li Hong-Sheng,Zhou Yan-Ni,Li Lu,Li Sheng-Fu,Long Dan,Chen Xue-Lu,Zhang Jia-Bi,Feng Li,Li You-Ping Redox biology The transcription factor hypoxia inducible factor-1α (HIF-1α) mediates adaptive responses to oxidative stress by nuclear translocation and regulation of gene expression. Mitochondrial changes are critical for the adaptive response to oxidative stress. However, the transcriptional and non-transcriptional mechanisms by which HIF-1α regulates mitochondria in response to oxidative stress are poorly understood. Here, we examined the subcellular localization of HIF-1α in human cells and identified a small fraction of HIF-1α that translocated to the mitochondria after exposure to hypoxia or HO treatment. Moreover, the livers of mice with CCl-induced fibrosis showed a progressive increase in HIF-1α association with the mitochondria, indicating the clinical relevance of this finding. To probe the function of this HIF-1α population, we ectopically expressed a mitochondrial-targeted form of HIF-1α (mito-HIF-1α). Expression of mito-HIF-1α was sufficient to attenuate apoptosis induced by exposure to hypoxia or HO-induced oxidative stress. Moreover, mito-HIF-1α expression reduced the production of reactive oxygen species, the collapse of mitochondrial membrane potential, and the expression of mitochondrial DNA-encoded mRNA in response to hypoxia or HO treatment independently of nuclear pathways. These data suggested that mitochondrial HIF-1α protects against oxidative stress induced-apoptosis independently of its well-known role as a transcription factor. 10.1016/j.redox.2019.101109
Hyperglycemia Aggravates the Cerebral Ischemia Injury via Protein O-GlcNAcylation. Journal of Alzheimer's disease : JAD BACKGROUND:At least one-third of Alzheimer's disease (AD) patients have cerebrovascular abnormalities, micro- and macro-infarctions, and ischemic white matter alterations. Stroke prognosis impacts AD development due to vascular disease. Hyperglycemia can readily produce vascular lesions and atherosclerosis, increasing the risk of cerebral ischemia. Our previous research has demonstrated that protein O-GlcNAcylation, a dynamic and reversible post-translational modification, provides protection against ischemic stroke. However, the role of O-GlcNAcylation in the exacerbation of cerebral ischemia injury due to hyperglycemia remains to be elucidated. OBJECTIVE:In this study, we explored the role and underlying mechanism of protein O-GlcNAcylation in the exacerbation of cerebral ischemia injury caused by hyperglycemia. METHODS:High glucose-cultured brain microvascular endothelial (bEnd3) cells were injured by oxygen-glucose deprivation. Cell viability was used as the assay result. Stroke outcomes and hemorrhagic transformation incidence were assessed in mice after middle cerebral artery occlusion under high glucose and streptozotocin-induced hyperglycemic conditions. Western blot estimated that O-GlcNAcylation influenced apoptosis levels in vitro and in vivo. RESULTS:In in vitro analyses showed that Thiamet-G induces upregulation of protein O-GlcNAcylation, which attenuates oxygen-glucose deprivation/R-induce injury in bEnd3 cells cultured under normal glucose conditions, while aggravated it under high glucose conditions. In in vivo analyses, Thiamet-G exacerbated cerebral ischemic injury and induced hemorrhagic transformation, accompanied by increased apoptosis. While blocking protein O-GlcNAcylation with 6-diazo-5-oxo-L-norleucine alleviated cerebral injury of ischemic stroke in different hyperglycemic mice. CONCLUSION:Overall, our study highlights the crucial role of O-GlcNAcylation in exacerbating cerebral ischemia injury under conditions of hyperglycemia. O-GlcNAcylation could potentially serve as a therapeutic target for ischemic stroke associated with AD. 10.3233/JAD-230264
Update of Immunosenescence in Cerebral Small Vessel Disease. Jian Banghao,Hu Mengyan,Cai Wei,Zhang Bingjun,Lu Zhengqi Frontiers in immunology Aging of the central nervous system (CNS) is closely associated with chronic sterile low-grade inflammation in older organisms and related immune response. As an amplifier for neuro-inflammaging, immunosenescence remodels and deteriorates immune systems gradually with the passage of time, and finally contributes to severe outcomes like stroke, dementia and neurodegeneration in elderly adults. Cerebral small vessel disease (CSVD), one of the major causes of vascular dementia, has an intensive connection with the inflammatory response and immunosenescence plays a crucial role in the pathology of this disorder. In this review, we discuss the impact of immunosenescence on the development of CSVD and its underlying mechanism. Furthermore, the clinical practice significance of immunosenescence management and the diagnosis and treatment of CSVD will be also discussed. 10.3389/fimmu.2020.585655
Pathophysiology of cerebral small vessel disease: a journey through recent discoveries. The Journal of clinical investigation Cerebral small vessel disease (cSVD) encompasses a heterogeneous group of age-related small vessel pathologies that affect multiple regions. Disease manifestations range from lesions incidentally detected on neuroimaging (white matter hyperintensities, small deep infarcts, microbleeds, or enlarged perivascular spaces) to severe disability and cognitive impairment. cSVD accounts for approximately 25% of ischemic strokes and the vast majority of spontaneous intracerebral hemorrhage and is also the most important vascular contributor to dementia. Despite its high prevalence and potentially long therapeutic window, there are still no mechanism-based treatments. Here, we provide an overview of the recent advances in this field. We summarize recent data highlighting the remarkable continuum between monogenic and multifactorial cSVDs involving NOTCH3, HTRA1, and COL4A1/A2 genes. Taking a vessel-centric view, we discuss possible cause-and-effect relationships between risk factors, structural and functional vessel changes, and disease manifestations, underscoring some major knowledge gaps. Although endothelial dysfunction is rightly considered a central feature of cSVD, the contributions of smooth muscle cells, pericytes, and other perivascular cells warrant continued investigation. 10.1172/JCI172841
Diagnosis and Management of Cerebral Small Vessel Disease. Continuum (Minneapolis, Minn.) OBJECTIVE:Cerebral small vessel disease (CSVD) is a common neurologic condition that contributes to considerable mortality and disability because of its impact on ischemic and hemorrhagic stroke risk and dementia. While attributes of the disease have been recognized for over two centuries, gaps in knowledge remain related to its prevention and management. The purpose of this review is to provide an overview of the current state of knowledge for CSVD. LATEST DEVELOPMENTS:CSVD can be recognized by well-defined radiographic criteria, but the pathogenic mechanism behind the disease is unclear. Hypertension control remains the best-known strategy for stroke prevention in patients with CSVD, and recent guidelines provide a long-term blood pressure target of less than 130/80 mm Hg for patients with ischemic and hemorrhagic stroke, including those with stroke related to CSVD. Cerebral amyloid angiopathy is the second leading cause of intracerebral hemorrhage and may be increasingly recognized because of newer, more sensitive imaging modalities. Transient focal neurologic episodes is a relatively new term used to describe "amyloid spells." Guidance on distinguishing these events from seizures and transient ischemic attacks has been published. ESSENTIAL POINTS:CSVD is prevalent and will likely be encountered by all neurologists in clinical practice. It is important for neurologists to be able to recognize CSVD, both radiographically and clinically, and to counsel patients on the prevention of disease progression. Blood pressure control is especially relevant, and strategies are needed to improve blood pressure control for primary and secondary stroke prevention in patients with CSVD. 10.1212/CON.0000000000001232
Inflammation and cerebral small vessel disease: A systematic review. Low Audrey,Mak Elijah,Rowe James B,Markus Hugh S,O'Brien John T Ageing research reviews Inflammation is increasingly implicated as a risk factor for dementia, stroke, and small vessel disease (SVD). However, the underlying mechanisms and causative pathways remain unclear. We systematically reviewed the existing literature on the associations between markers of inflammation and SVD (i.e., white matter hyperintensities (WMH), lacunes, enlarged perivascular spaces (EPVS), cerebral microbleeds (CMB)) in cohorts of older people with good health, cerebrovascular disease, or cognitive impairment. Based on distinctions made in the literature, markers of inflammation were classified as systemic inflammation (e.g. C-reactive protein, interleukin-6, fibrinogen) or vascular inflammation/endothelial dysfunction (e.g. homocysteine, von Willebrand factor, Lp-PLA2). Evidence from 82 articles revealed relatively robust associations between SVD and markers of vascular inflammation, especially amongst stroke patients, suggesting that alterations to the endothelium and blood-brain barrier may be a driving force behind SVD. Conversely, cross-sectional findings on systemic inflammation were mixed, although longitudinal investigations demonstrated that elevated levels of systemic inflammatory markers at baseline predicted subsequent SVD severity and progression. Importantly, regional analysis revealed that systemic and vascular inflammation were differentially related to two distinct forms of SVD. Specifically, markers of vascular inflammation tended to be associated with SVD in areas typical of hypertensive arteriopathy (e.g., basal ganglia), while systemic inflammation appeared to be involved in CAA-related vascular damage (e.g., centrum semiovale). Nonetheless, there is insufficient data to establish whether inflammation is causal of, or secondary to, SVD. Findings have important implications on interventions, suggesting the potential utility of treatments targeting the brain endothelium and blood brain barrier to combat SVD and associated neurodegenerative diseases. 10.1016/j.arr.2019.100916
Advanced MRI in cerebral small vessel disease. International journal of stroke : official journal of the International Stroke Society Cerebral small vessel disease (cSVD) is a major cause of stroke and dementia. This review summarizes recent developments in advanced neuroimaging of cSVD with a focus on clinical and research applications. In the first section, we highlight how advanced structural imaging techniques, including diffusion magnetic resonance imaging (MRI), enable improved detection of tissue damage, including characterization of tissue appearing normal on conventional MRI. These techniques enable progression to be monitored and may be useful as surrogate endpoint in clinical trials. Quantitative MRI, including iron and myelin imaging, provides insights into tissue composition on the molecular level. In the second section, we cover how advanced MRI techniques can demonstrate functional or dynamic abnormalities of the blood vessels, which could be targeted in mechanistic research and early-stage intervention trials. Such techniques include the use of dynamic contrast enhanced MRI to measure blood-brain barrier permeability, and MRI methods to assess cerebrovascular reactivity. In the third section, we discuss how the increased spatial resolution provided by ultrahigh field MRI at 7 T allows imaging of perforating arteries, and flow velocity and pulsatility within them. The advanced MRI techniques we describe are providing novel pathophysiological insights in cSVD and allow improved quantification of disease burden and progression. They have application in clinical trials, both in assessing novel therapeutic mechanisms, and as a sensitive endpoint to assess efficacy of interventions on parenchymal tissue damage. We also discuss challenges of these advanced techniques and suggest future directions for research. 10.1177/17474930221091879
Cerebral small vessel disease: A review. Chojdak-Łukasiewicz Justyna,Dziadkowiak Edyta,Zimny Anna,Paradowski Bogusław Advances in clinical and experimental medicine : official organ Wroclaw Medical University Cerebral small vessel disease (CSVD) is the most common, chronic and progressive vascular disease. The changes affect arterioles, capillaries and small veins supplying the white matter and deep structures of the brain. It is the most common incidental finding on brain scans, especially in people over 80 years of age. Magnetic resonance imaging (MRI) plays a key role in the diagnosis of CSVD. The nomenclature and radiological phenotypes of CSVD were published in 2013 based on the unified position of the so-called Centres of Excellence in Neurodegeneration. The disease is characterized by a diverse clinical and radiological picture. It is primarily responsible for stroke incidents, gait disturbances, depression, cognitive impairment, and dementia in the elderly. The CSVD contributes to about 20% of strokes, including 25% of ischemic strokes and 45% of dementias. Common causes of CSVD include arteriosclerosis, cerebral amyloid angiopathy (CAA), genetic small vessel angiopathy, inflammation and immune-mediated small vessel diseases, and venous collagenosis. There is no causal treatment and management is mainly based on combating known risk factors for cardiovascular disease (CVD). 10.17219/acem/131216
Small vessel disease: mechanisms and clinical implications. Wardlaw Joanna M,Smith Colin,Dichgans Martin The Lancet. Neurology Small vessel disease is a disorder of cerebral microvessels that causes white matter hyperintensities and several other common abnormalities (eg, recent small subcortical infarcts and lacunes) seen on brain imaging. Despite being a common cause of stroke and vascular dementia, the underlying pathogenesis is poorly understood. Research in humans has identified several manifestations of cerebral microvessel endothelial dysfunction including blood-brain barrier dysfunction, impaired vasodilation, vessel stiffening, dysfunctional blood flow and interstitial fluid drainage, white matter rarefaction, ischaemia, inflammation, myelin damage, and secondary neurodegeneration. These brain abnormalities are more dynamic and widespread than previously thought. Relationships between lesions and symptoms are highly variable but poorly understood. Major challenges are the determination of which vascular dysfunctions are most important in pathogenesis, which abnormalities are reversible, and why lesion progression and symptomatology are so variable. This knowledge will help to identify potential targets for intervention and improve risk prediction for individuals with small vessel disease. 10.1016/S1474-4422(19)30079-1