logo logo
Hyperoxia causes senescence and increases glycolysis in cultured lung epithelial cells. Scaffa Alejandro M,Peterson Abigail L,Carr Jennifer F,Garcia David,Yao Hongwei,Dennery Phyllis A Physiological reports Supplemental oxygen and mechanical ventilation commonly used in premature infants may lead to chronic lung disease of prematurity, which is characterized by arrested alveolar development and dysmorphic vascular development. Hyperoxia is also known to dysregulate p53, senescence, and metabolism. However, whether these changes in p53, senescence, and metabolism are intertwined in response to hyperoxia is still unknown. Given that the lung epithelium is the first cell to encounter ambient oxygen during a hyperoxic exposure, we used mouse lung epithelial cells (MLE-12), surfactant protein expressing type II cells, to explore whether hyperoxic exposure alters senescence and glycolysis. We measured glycolytic rate using a Seahorse Bioanalyzer assay and senescence using a senescence-associated β galactosidase activity assay with X-gal and C FDG as substrates. We found that hyperoxic exposure caused senescence and increased glycolysis as well as reduced proliferation. This was associated with increased double stranded DNA damage, p53 phosphorylation and nuclear localization. Furthermore, hyperoxia-induced senescence was p53-dependent, but not pRB-dependent, as shown in p53KO and pRBKO cell lines. Despite the inhibitory effects of p53 on glycolysis, we observed that glycolysis was upregulated in hyperoxia-exposed MLE-12 cells. This was attributable to a subpopulation of highly glycolytic senescent cells detected by C FDG sorting. Nevertheless, inhibition of glycolysis did not prevent hyperoxia-induced senescence. Therapeutic strategies modulating p53 and glycolysis may be useful to mitigate the detrimental consequences of hyperoxia in the neonatal lung. 10.14814/phy2.14839
Enhanced glycolysis in granulosa cells promotes the activation of primordial follicles through mTOR signaling. Cell death & disease In mammals, nonrenewable primordial follicles are activated in an orderly manner to maintain the longevity of reproductive life. Mammalian target of rapamycin (mTOR)-KIT ligand (KITL) signaling in pre-granulosa cells and phosphatidylinositol 3-kinase (PI3K)-protein kinase B (Akt)-forkhead Box O3a (FOXO3a) signaling in oocytes are important for primordial follicle activation. The activation process is accompanied by the enhancement of energy metabolism, but the causal relationship is unclear. In the present study, the levels of glycolysis-related proteins GLUT4, HK1, PFKL, and PKM2 were significantly increased in granulosa cells but were decreased in oocytes during the mouse primordial-to-primary follicle transition. Both short-term pyruvate deprivation in vitro and acute fasting in vivo increased the glycolysis-related gene and protein levels, decreased AMPK activity, and increased mTOR activity in mouse ovaries. The downstream pathways Akt and FOXO3a were phosphorylated, resulting in mouse primordial follicle activation. The blockade of glycolysis by 2-deoxyglucose (2-DG), but not the blockade of the communication network between pre-granulosa cells and oocyte by KIT inhibitor ISCK03, decreased short-term pyruvate deprivation-promoted mTOR activity. Glycolysis was also increased in human granulosa cells during the primordial-to-primary follicle transition, and short-term pyruvate deprivation promoted the activation of human primordial follicles by increasing the glycolysis-related protein levels and mTOR activity in ovarian tissues. Taken together, the enhanced glycolysis in granulosa cells promotes the activation of primordial follicles through mTOR signaling. These findings provide new insight into the relationship between glycolytic disorders and POI/PCOS. 10.1038/s41419-022-04541-1