logo logo
An Expedition on Synthetic Methodology of FDA-approved Anticancer Drugs (2018-2021). Anti-cancer agents in medicinal chemistry New drugs being established in the market every year produce specified structures for selective biological targeting. With medicinal insights into molecular recognition, these begot molecules open new rooms for designing potential new drug molecules. In this review, we report the compilation and analysis of a total of 56 drugs including 33 organic small molecules (Mobocertinib, Infigratinib, Sotorasib, Trilaciclib, Umbralisib, Tepotinib, Relugolix, Pralsetinib, Decitabine, Ripretinib, Selpercatinib, Capmatinib, Pemigatinib, Tucatinib, Selumetinib, Tazemetostat, Avapritinib, Zanubrutinib, Entrectinib, Pexidartinib, Darolutamide, Selinexor, Alpelisib, Erdafitinib, Gilteritinib, Larotrectinib, Glasdegib, Lorlatinib, Talazoparib, Dacomitinib, Duvelisib, Ivosidenib, Apalutamide), 6 metal complexes (Edotreotide Gallium Ga-68, fluoroestradiol F-18, Cu 64 dotatate, Gallium 68 PSMA-11, Piflufolastat F-18, 177Lu (lutetium)), 16 macromolecules as monoclonal antibody conjugates (Brentuximabvedotin, Amivantamab-vmjw, Loncastuximabtesirine, Dostarlimab, Margetuximab, Naxitamab, Belantamabmafodotin, Tafasitamab, Inebilizumab, SacituzumabGovitecan, Isatuximab, Trastuzumab, Enfortumabvedotin, Polatuzumab, Cemiplimab, Mogamulizumab) and 1 peptide enzyme (-derived asparaginase) approved by the U.S. FDA between 2018 to 2021. These drugs act as anticancer agents against various cancer types, especially non-small cell lung, lymphoma, breast, prostate, multiple myeloma, neuroendocrine tumor, cervical, bladder, cholangiocarcinoma, myeloid leukemia, gastrointestinal, neuroblastoma, thyroid, epithelioid and cutaneous squamous cell carcinoma. The review comprises the key structural features, approval times, target selectivity, mechanisms of action, therapeutic indication, formulations, and possible synthetic approaches of these approved drugs. These crucial details will benefit the scientific community for futuristic new developments in this arena. 10.2174/0118715206259585240105051941
Small-molecule inhibitors, immune checkpoint inhibitors, and more: FDA-approved novel therapeutic drugs for solid tumors from 1991 to 2021. Journal of hematology & oncology The United States Food and Drug Administration (US FDA) has always been a forerunner in drug evaluation and supervision. Over the past 31 years, 1050 drugs (excluding vaccines, cell-based therapies, and gene therapy products) have been approved as new molecular entities (NMEs) or biologics license applications (BLAs). A total of 228 of these 1050 drugs were identified as cancer therapeutics or cancer-related drugs, and 120 of them were classified as therapeutic drugs for solid tumors according to their initial indications. These drugs have evolved from small molecules with broad-spectrum antitumor properties in the early stage to monoclonal antibodies (mAbs) and antibody‒drug conjugates (ADCs) with a more precise targeting effect during the most recent decade. These drugs have extended indications for other malignancies, constituting a cancer treatment system for monotherapy or combined therapy. However, the available targets are still mainly limited to receptor tyrosine kinases (RTKs), restricting the development of antitumor drugs. In this review, these 120 drugs are summarized and classified according to the initial indications, characteristics, or functions. Additionally, RTK-targeted therapies and immune checkpoint-based immunotherapies are also discussed. Our analysis of existing challenges and potential opportunities in drug development may advance solid tumor treatment in the future. 10.1186/s13045-022-01362-9
An FDA oncology analysis of immune activating products and first-in-human dose selection. Saber Haleh,Gudi Ramadevi,Manning Michael,Wearne Emily,Leighton John K Regulatory toxicology and pharmacology : RTP As sub-therapeutic doses are not medically justifiable in patients with cancer, we retrospectively analyzed data on immune activating products, to assess approaches used in first-in-human (FIH) dose selection, the utility of animal toxicology studies in dose selection, and the length of time to complete FIH trials. The information collected included pharmacology and toxicology data, FIH dose and rationale, and dose-finding trial design. We used the principles of the Hill equation to estimate the FIH doses for antibodies and compared them to the doses administered to patients with acceptable toxicities. For approximately half the antibodies (44%) examined, the FIH doses were at least a hundred-fold lower than the doses safely administered to patients, indicating optimization of FIH dose selection and/or optimization of dose-finding trial design is needed to minimize patient exposure to sub-therapeutic doses. However, selection of the FIH dose for antibodies based on animal toxicology studies using 1/6th the HNSTD or 1/10th the NOAEL resulted in human doses that were unsafe for several antibodies examined. We also concluded that antibodies with Fc-modifications for increased effector function may be less tolerated, resulting in toxicities at lower doses than those without such modifications. There was insufficient information to evaluate CD3 bispecific products. 10.1016/j.yrtph.2016.10.002
An analysis of FDA-approved drugs for oncology. Drug discovery today Cancer remains the second leading cause of death globally. The number of new medicines targeting cancer has grown impressively since the 1990s. On average, ten new drugs are introduced each year. Such growth has partly been achieved by emphasizing biologics and orphan indications, which account for one-quarter and one-half of new oncology drugs, respectively. The biotechnology industry likewise has become the primary driver of cancer drug development in terms of patents, preclinical and clinical research, although pharmaceutical companies are granted more FDA approvals. Many targeting strategies have been successful but recent trends suggest that kinase targets, although tractable, might be overemphasized. 10.1016/j.drudis.2014.08.007
An FDA oncology analysis of toxicities associated with PBD-containing antibody-drug conjugates. Saber Haleh,Simpson Natalie,Ricks Tiffany K,Leighton John K Regulatory toxicology and pharmacology : RTP With a new generation of antibody-drug conjugates (ADCs) that contain a drug-to-antibody ratio (DAR) of 2, the question remains whether advances in technology have resulted in more stable and tumor-specific ADCs. These ADCs are anticipated to cause minimal systemic exposures of payloads, with toxicities being evident mainly at tumor sites. We examined 15 ADCs with PBD-dimer payloads and a DAR of 2 and concluded that dose limiting toxicities in animals and in humans are generally related to the payload. Both the payloads and the ADCs had pro-inflammatory responses causing severe toxicities that were at times of low incidence, making it difficult to assess a cause-effect relationship. Due to their low incidence, single-patient cohorts may not detect these events and such design may not be suitable in first-in-human (FIH) trials. The commonly proposed approach by the sponsors for FIH dose selection was 1/6 highest non-severely toxic dose (HNSTD) in monkeys. This approach resulted in an acceptable balance of safety and efficient dose escalation in phase 1 trials, when using data from repeat-dose toxicology studies and body surface area for scaling. No sponsor used the data generated in rodents or proposed novel approaches for FIH dose selection. 10.1016/j.yrtph.2019.104429
An FDA oncology analysis of antibody-drug conjugates. Saber Haleh,Leighton John K Regulatory toxicology and pharmacology : RTP Antibody-drug conjugates (ADCs) are complex molecules composed of monoclonal antibodies conjugated to potent cytotoxic agents through chemical linkers. Because of this complexity, sponsors have used different approaches for the design of nonclinical studies to support the safety evaluation of ADCs and first-in-human (FIH) dose selection. We analyzed this data with the goal of describing the relationship between nonclinical study results and Phase 1 study outcomes. We summarized the following data from investigational new drug applications (INDs) for ADCs: plasma stability, animal study designs and toxicities, and algorithms used for FIH dose selection. Our review found that selecting a FIH dose that is 1/6th the highest non-severely toxic dose (HNSTD) in cynomolgus monkeys or 1/10th the STD10 in rodents scaled according to body surface area (BSA) generally resulted in the acceptable balance of safety and efficient dose-escalation in a Phase 1 trial. Other approaches may also be acceptable, e.g. 1/10th the HNSTD in monkeys using BSA or 1/10th the NOAEL in monkeys or rodents using body weight for scaling. While the animal data for the vc-MMAE platform yielded variable range of HNSTDs in cynomolgus monkeys, MTDs were in a narrow range in patients, suggesting that for ADCs sharing the same small molecule drug, linker and drug:antibody ratio, prior clinical data can inform the design of a Phase 1 clinical trial. 10.1016/j.yrtph.2015.01.014
An FDA oncology analysis of CD3 bispecific constructs and first-in-human dose selection. Saber Haleh,Del Valle Pedro,Ricks Tiffany K,Leighton John K Regulatory toxicology and pharmacology : RTP We retrospectively examined the nonclinical studies conducted with 17 CD3 bispecific constructs in support of first-in-human (FIH) trials in oncology. We also collected information on the design of dose-finding clinical trials. Sponsors have used different MABEL approaches for FIH dose selection. To better assess acceptable approaches, FIH doses were computed from nonclinical studies and compared to the maximum tolerated doses (MTDs) in patients, to the highest human doses (HHDs) when an MTD was not identified, or to the recommended human dose (RHD) for blinatumomab. We concluded that approaches based on receptor occupancy, highest non-severely toxic dose, or no-observed adverse effect level are not acceptable for selecting the FIH dose as they resulted in doses close to or above the MTDs, HHDs, or the RHD. A FIH dose corresponding to 10%-30% pharmacologic activity (PA) was an acceptable approach. A FIH dose corresponding to 50% PA was acceptable for all except one construct, potentially due to its biological or structural properties. The most common toxicities in animals and patients were those related to cytokine release. Doses were better tolerated when intra-animal or intra-patient dose escalation was used. Exposing naïve patients to an MTD achieved with intra-patient dose escalation design may be unsafe. 10.1016/j.yrtph.2017.09.001