logo logo
Luteolin Mitigates D-Galactose-Induced Brain Ageing in Rats: SIRT1-Mediated Neuroprotection. Neurochemical research Luteolin is an essential natural polyphenol found in a variety of plants. Numerous studies have supported its protective role in neurodegenerative diseases, yet the research for its therapeutic utility in D-galactose (D-gal)-induced brain ageing is still lacking. In this study, the potential neuroprotective impact of luteolin against D-gal-induced brain ageing was explored. Forty rats were randomly divided into four groups: control, luteolin, D-gal, and luteolin-administered D-gal groups. All groups were subjected to behavioural, cholinergic function, and hippocampal mitochondrial respiration assessments. Hippocampal oxidative, neuro-inflammatory, senescence and apoptotic indicators were detected. Gene expressions of SIRT1, BDNF, and RAGE were assessed. Hippocampal histopathological studies, along with GFAP and Ki67 immunoreactivity, were performed. Our results demonstrated that luteolin effectively alleviated D-gal-induced cognitive impairment and reversed cholinergic abnormalities. Furthermore, luteolin administration substantially mitigated hippocampus oxidative stress, mitochondrial dysfunction, neuro-inflammation, and senescence triggered by D-gal. Additionally, luteolin treatment considerably attenuated neuronal apoptosis and upregulated hippocampal SIRT1 mRNA expression. In conclusion, our findings revealed that luteolin administration attenuated D-gal-evoked brain senescence, improving mitochondrial function and enhancing hippocampal neuroregeneration in an ageing rat model through its antioxidant, senolytic, anti-inflammatory, and anti-apoptotic impacts, possibly due to upregulation of SIRT1. Luteolin could be a promising therapeutic modality for brain aging-associated abnormalities. 10.1007/s11064-024-04203-y
A scenario for an evolutionary selection of ageing. eLife Signs of ageing become apparent only late in life, after organismal development is finalized. Ageing, most notably, decreases an individual's fitness. As such, it is most commonly perceived as a non-adaptive force of evolution and considered a by-product of natural selection. Building upon the evolutionarily conserved age-related Smurf phenotype, we propose a simple mathematical life-history trait model in which an organism is characterized by two core abilities: reproduction and homeostasis. Through the simulation of this model, we observe (1) the convergence of fertility's end with the onset of senescence, (2) the relative success of ageing populations, as compared to non-ageing populations, and (3) the enhanced evolvability (i.e. the generation of genetic variability) of ageing populations. In addition, we formally demonstrate the mathematical convergence observed in (1). We thus theorize that mechanisms that link the timing of fertility and ageing have been selected and fixed over evolutionary history, which, in turn, explains why ageing populations are more evolvable and therefore more successful. Broadly speaking, our work suggests that ageing is an adaptive force of evolution. 10.7554/eLife.92914
Exploring role of natural compounds in molecular alterations associated with brain ageing: A perspective towards nutrition for ageing brain. Ageing research reviews Aging refers to complete deterioration of physiological integrity and function. By midcentury, adults over 60 years of age and children under 15 years will begin to outnumber people in working age. This shift will bring multiple global challenges for economy, health, and society. Eventually, aging is a natural process playing a vital function in growth and development during pediatric stage, maturation during adult stage, and functional depletion. Tissues experience negative consequences with enhanced genomic instability, deregulated nutrient sensing, mitochondrial dysfunction, and decline in performance on cognitive tasks. As brain ages, its volume decreases, neurons & glia get inflamed, vasculature becomes less developed, blood pressure increases with a risk of stroke, ischemia, and cognitive deficits. Diminished cellular functions leads to progressive reduction in functional and emotional capacity with higher possibility of disease and finally death. This review overviews cellular as well as molecular aspects of aging, biological pathway related to accelerated brain aging, and strategies minimizing cognitive aging. Age-related changes include altered bioenergetics, decreased neuroplasticity and flexibility, aberrant neural activity, deregulated Ca homeostasis in neurons, buildup of reactive oxygen species, and neuro-inflammation. Unprecedented progress has been achieved in recent studies, particularly in terms of how herbal or natural substances affect genetic pathways and biological functions that have been preserved through evolution. Herein, the present work provides an overview of ageing and age-related disorders and explore the molecular mechanisms that underlie therapeutic effects of herbal and natural chemicals on neuropathological signs of brain aging. 10.1016/j.arr.2024.102282