Exosomal miR-146a-5p and miR-155-5p promote CXCL12/CXCR7-induced metastasis of colorectal cancer by crosstalk with cancer-associated fibroblasts.
Cell death & disease
C-X-C motif chemokine receptor 7 (CXCR7) is a newly discovered atypical chemokine receptor that binds to C-X-C motif chemokine ligand 12 (CXCL12) with higher affinity than CXCR4 and is associated with the metastasis of colorectal cancer (CRC). Cancer-associated fibroblasts (CAFs) have been known to promote tumor progression. However, whether CAFs are involved in CXCR7-mediated metastasis of CRC remains elusive. We found a significant positive correlation between CXCR7 expression and CAF activation markers in colonic tissues from clinical specimens and in villin-CXCR7 transgenic mice. RNA sequencing revealed a coordinated increase in the levels of miR-146a-5p and miR-155-5p in CXCR7-overexpressing CRC cells and their exosomes. Importantly, these CRC cell-derived miR-146a-5p and miR-155-5p could be uptaken by CAFs via exosomes and promote the activation of CAFs through JAK2-STAT3/NF-κB signaling by targeting suppressor of cytokine signaling 1 (SOCS1) and zinc finger and BTB domain containing 2 (ZBTB2). Reciprocally, activated CAFs further potently enhanced the invasive capacity of CRC cells. Mechanistically, CAFs transfected with miR-146a-5p and miR-155-5p exhibited a robust increase in the levels of inflammatory cytokines interleukin-6, tumor necrosis factor-α, transforming growth factor-β, and CXCL12, which trigger the epithelial-mesenchymal transition and pro-metastatic switch of CRC cells. More importantly, the activation of CAFs by miR-146a-5p and miR-155-5p facilitated tumor formation and lung metastasis of CRC in vivo using tumor xenograft models. Our work provides novel insights into CXCR7-mediated CRC metastasis from tumor-stroma interaction and serum exosomal miR-146a-5p and miR-155-5p could serve as potential biomarkers and therapeutic targets for inhibiting CRC metastasis.
10.1038/s41419-022-04825-6
CXCL12+ dermal fibroblasts promote neutrophil recruitment and host defense by recognition of IL-17.
The Journal of experimental medicine
The skin provides an essential barrier for host defense through rapid action of multiple resident and recruited cell types, but the complex communication network governing these processes is incompletely understood. To define these cell-cell interactions more clearly, we performed an unbiased network analysis of mouse skin during invasive S. aureus infection and revealed a dominant role for CXCL12+ fibroblast subsets in neutrophil communication. These subsets predominantly reside in the reticular dermis, express adipocyte lineage markers, detect IL-17 and TNFα, and promote robust neutrophil recruitment through NFKBIZ-dependent release of CXCR2 ligands and CXCL12. Targeted deletion of Il17ra in mouse fibroblasts resulted in greatly reduced neutrophil recruitment and increased infection by S. aureus. Analogous human CXCL12+ fibroblast subsets abundantly express neutrophil chemotactic factors in psoriatic skin that are subsequently decreased upon therapeutic targeting of IL-17. These findings show that CXCL12+ dermal immune acting fibroblast subsets play a critical role in cutaneous neutrophil recruitment and host defense.
10.1084/jem.20231425