logo logo
Multivariate autoregressive model estimation for high-dimensional intracranial electrophysiological data. NeuroImage Fundamental to elucidating the functional organization of the brain is the assessment of causal interactions between different brain regions. Multivariate autoregressive (MVAR) modeling techniques applied to multisite electrophysiological recordings are a promising avenue for identifying such causal links. They estimate the degree to which past activity in one or more brain regions is predictive of another region's present activity, while simultaneously accounting for the mediating effects of other regions. Including as many mediating variables as possible in the model has the benefit of drastically reducing the odds of detecting spurious causal connectivity. However, effective bounds on the number of MVAR model coefficients that can be estimated reliably from limited data make exploiting the potential of MVAR models challenging for even modest numbers of recording sites. Here, we utilize well-established dimensionality-reduction techniques to fit MVAR models to human intracranial data from ∼100 - 200 recording sites spanning dozens of anatomically and functionally distinct cortical regions. First, we show that high-dimensional MVAR models can be successfully estimated from long segments of data and yield plausible connectivity profiles. Next, we use these models to generate synthetic data with known ground-truth connectivity to explore the utility of applying principal component analysis and group least absolute shrinkage and selection operator (gLASSO) to reduce the number of parameters (connections) during model fitting to shorter data segments. We show that gLASSO is highly effective for recovering ground-truth connectivity in the limited data regime, capturing important features of connectivity for high-dimensional models with as little as 10 seconds of data. The methods presented here have broad applicability to the analysis of high-dimensional time series data in neuroscience, facilitating the elucidation of the neural basis of sensation, cognition, and arousal. 10.1016/j.neuroimage.2022.119057
High-dimensional multivariate autoregressive model estimation of human electrophysiological data using fMRI priors. NeuroImage Multivariate autoregressive (MVAR) model estimation enables assessment of causal interactions in brain networks. However, accurately estimating MVAR models for high-dimensional electrophysiological recordings is challenging due to the extensive data requirements. Hence, the applicability of MVAR models for study of brain behavior over hundreds of recording sites has been very limited. Prior work has focused on different strategies for selecting a subset of important MVAR coefficients in the model to reduce the data requirements of conventional least-squares estimation algorithms. Here we propose incorporating prior information, such as resting state functional connectivity derived from functional magnetic resonance imaging, into MVAR model estimation using a weighted group least absolute shrinkage and selection operator (LASSO) regularization strategy. The proposed approach is shown to reduce data requirements by a factor of two relative to the recently proposed group LASSO method of Endemann et al (Neuroimage 254:119057, 2022) while resulting in models that are both more parsimonious and more accurate. The effectiveness of the method is demonstrated using simulation studies of physiologically realistic MVAR models derived from intracranial electroencephalography (iEEG) data. The robustness of the approach to deviations between the conditions under which the prior information and iEEG data is obtained is illustrated using models from data collected in different sleep stages. This approach allows accurate effective connectivity analyses over short time scales, facilitating investigations of causal interactions in the brain underlying perception and cognition during rapid transitions in behavioral state. 10.1016/j.neuroimage.2023.120211