logo logo
Mitochondrial dysfunction and sarcopenia of aging: from signaling pathways to clinical trials. Marzetti Emanuele,Calvani Riccardo,Cesari Matteo,Buford Thomas W,Lorenzi Maria,Behnke Bradley J,Leeuwenburgh Christiaan The international journal of biochemistry & cell biology Sarcopenia, the age-related loss of muscle mass and function, imposes a dramatic burden on individuals and society. The development of preventive and therapeutic strategies against sarcopenia is therefore perceived as an urgent need by health professionals and has instigated intensive research on the pathophysiology of this syndrome. The pathogenesis of sarcopenia is multifaceted and encompasses lifestyle habits, systemic factors (e.g., chronic inflammation and hormonal alterations), local environment perturbations (e.g., vascular dysfunction), and intramuscular specific processes. In this scenario, derangements in skeletal myocyte mitochondrial function are recognized as major factors contributing to the age-dependent muscle degeneration. In this review, we summarize prominent findings and controversial issues on the contribution of specific mitochondrial processes - including oxidative stress, quality control mechanisms and apoptotic signaling - on the development of sarcopenia. Extramuscular alterations accompanying the aging process with a potential impact on myocyte mitochondrial function are also discussed. We conclude with presenting methodological and safety considerations for the design of clinical trials targeting mitochondrial dysfunction to treat sarcopenia. Special emphasis is placed on the importance of monitoring the effects of an intervention on muscle mitochondrial function and identifying the optimal target population for the trial. This article is part of a Directed Issue entitled: Molecular basis of muscle wasting. 10.1016/j.biocel.2013.06.024
Mitochondria, muscle health, and exercise with advancing age. Carter Heather N,Chen Chris C W,Hood David A Physiology (Bethesda, Md.) Skeletal muscle health is dependent on the optimal function of its mitochondria. With advancing age, decrements in numerous mitochondrial variables are evident in muscle. Part of this decline is due to reduced physical activity, whereas the remainder appears to be attributed to age-related alterations in mitochondrial synthesis and degradation. Exercise is an important strategy to stimulate mitochondrial adaptations in older individuals to foster improvements in muscle function and quality of life. 10.1152/physiol.00039.2014