Treatment of Donor Cells with Oxidative Phosphorylation Inhibitor CPI Enhances Porcine Cloned Embryo Development.
Animals : an open access journal from MDPI
Somatic cell nuclear transfer (SCNT) technology holds great promise for livestock industry, life science and human biomedicine. However, the development and application of this technology is limited by the low developmental potential of SCNT embryos. The developmental competence of cloned embryos is influenced by the energy metabolic status of donor cells. The purpose of this study was to investigate the effects of CPI, an oxidative phosphorylation inhibitor, on the energy metabolism pathways of pig fibroblasts and the development of subsequent SCNT embryos. The results showed that treatment of porcine fibroblasts with CPI changed the cellular energy metabolic pathways from oxidative phosphorylation to glycolysis and enhanced the developmental ability of subsequent SCNT embryos. The present study establishes a simple, new way to improve pig cloning efficiency, helping to promote the development and application of pig SCNT technology.
10.3390/ani14091362
Leukemia inhibitory factor enhances the development and subsequent blastocysts quality of yak oocytes .
Frontiers in veterinary science
Leukemia inhibitory factor (LIF) is a multipotent cytokine of the IL-6 family which plays a critical role in the maturation and development of oocytes. This study evaluated the influence of LIF on the maturation and development ability of yak oocytes, and the quality of subsequent blastocysts under culture settings. Different concentrations of LIF (0, 25, 50, and 100 ng/mL) were added during the culture of oocytes to detect the maturation rate of oocytes, levels of mitochondria, reactive oxygen species (ROS), actin, and apoptosis in oocytes, mRNA transcription levels of apoptosis and antioxidant-related genes in oocytes, and total cell number and apoptosis levels in subsequent blastocysts. The findings revealed that 50 ng/mL LIF could significantly increase the maturation rate ( < 0.01), levels of mitochondria ( < 0.01) and actin ( < 0.01), and mRNA transcription levels of anti-apoptotic and antioxidant-related genes in yak oocytes. Also, 50 ng/mL LIF could significantly lower the generation of ROS ( < 0.01) and apoptosis levels of oocytes ( < 0.01). In addition, blastocysts formed from 50 ng/mL LIF-treated oocytes showed significantly larger total cell numbers ( < 0.01) and lower apoptosis rates ( < 0.01) than the control group. In conclusion, the addition of LIF during the maturation of yak oocytes improved the quality and the competence of maturation and development in oocytes, as well as the quality of subsequent blastocysts. The result of this study provided some insights into the role and function of LIF yak oocytes maturation, as well as provided fundamental knowledge for assisted reproductive technologies in the yak.
10.3389/fvets.2022.997709
Towards Improving the Outcomes of Assisted Reproductive Technologies of Cattle and Sheep, with Particular Focus on Recipient Management.
Animals : an open access journal from MDPI
The Australian agricultural industry contributes AUD 47 billion to the Australian economy, and Australia is the world's largest exporter of sheep meat and the third largest for beef. Within Australia, sheep meat consumption continues to rise, with beef consumption being amongst the highest in the world; therefore, efficient strategies to increase herd/flock size are integral to the success of these industries. Reproductive management is crucial to increasing the efficiency of Australian breeding programs. The use of assisted reproductive technologies (ARTs) has the potential to increase efficiency significantly. The implementation of multiple ovulation and embryo transfer (MOET) and juvenile in vitro fertilization and embryo transfer (JIVET) in combination with genomic selection and natural mating and AI is the most efficient way to increase genetic gain, and thus increase reproductive efficiency within the Australian livestock industries. However, ARTs are costly, and high variation, particularly between embryo transfer recipients in their ability to maintain pregnancy, is a significant constraint to the widespread commercial adoption of ARTs. The use of a phenotypic marker for the selection of recipients, as well as the better management of recipient animals, may be an efficient and cost-effective means to increase the productivity of the Australian livestock industry.
10.3390/ani10020293
Glycine regulates lipid peroxidation promoting porcine oocyte maturation and early embryonic development.
Journal of animal science
In vitro-cultured oocytes are separated from the follicular micro-environment in vivo and are more vulnerable than in vivo oocytes to changes in the external environment. This vulnerability disrupts the homeostasis of the intracellular environment, affecting oocyte meiotic completion, and subsequent embryonic developmental competence in vitro. Glycine, one of the main components of glutathione (GSH), plays an important role in the protection of porcine oocytes in vitro. However, the protective mechanism of glycine needs to be further clarified. Our results showed that glycine supplementation promoted cumulus cell expansion and oocyte maturation. Detection of oocyte development ability showed that glycine significantly increased the cleavage rate and blastocyst rate during in vitro fertilization (IVF). SMART-seq revealed that this effect was related to glycine-mediated regulation of cell membrane structure and function. Exogenous addition of glycine significantly increased the levels of the anti-oxidant GSH and the expression of anti-oxidant-related genes (glutathione peroxidase 4 [GPX4], catalase [CAT], superoxide dismutase 1 [SOD1], superoxide dismutase 2 [SOD2], and mitochondrial solute carrier family 25, member 39 [SLC25A39]), decreased the lipid peroxidation caused by reactive oxygen species (ROS) and reduced the level of malondialdehyde (MDA) by enhancing the functions of mitochondria, peroxisomes and lipid droplets (LDs) and the levels of lipid metabolism-related factors (peroxisome proliferator activated receptor coactivator 1 alpha [PGC-1α], peroxisome proliferator-activated receptor γ [PPARγ], sterol regulatory element binding factor 1 [SREBF1], autocrine motility factor receptor [AMFR], and ATP). These effects further reduced ferroptosis and maintained the normal structure and function of the cell membrane. Our results suggest that glycine plays an important role in oocyte maturation and later development by regulating ROS-induced lipid metabolism, thereby protecting against biomembrane damage.
10.1093/jas/skac425
Advanced technologies for genetically manipulating the silkworm Bombyx mori, a model Lepidopteran insect.
Xu Hanfu,O'Brochta David A
Proceedings. Biological sciences
Genetic technologies based on transposon-mediated transgenesis along with several recently developed genome-editing technologies have become the preferred methods of choice for genetically manipulating many organisms. The silkworm, Bombyx mori, is a Lepidopteran insect of great economic importance because of its use in silk production and because it is a valuable model insect that has greatly enhanced our understanding of the biology of insects, including many agricultural pests. In the past 10 years, great advances have been achieved in the development of genetic technologies in B. mori, including transposon-based technologies that rely on piggyBac-mediated transgenesis and genome-editing technologies that rely on protein- or RNA-guided modification of chromosomes. The successful development and application of these technologies has not only facilitated a better understanding of B. mori and its use as a silk production system, but also provided valuable experiences that have contributed to the development of similar technologies in non-model insects. This review summarizes the technologies currently available for use in B. mori, their application to the study of gene function and their use in genetically modifying B. mori for biotechnology applications. The challenges, solutions and future prospects associated with the development and application of genetic technologies in B. mori are also discussed.
10.1098/rspb.2015.0487
Progress on CRISPR-Cas gene editing technology in sheep production.
Yi chuan = Hereditas
Gene editing is a kind of genetic engineering technology that can modify the genome. In recent years, with the rapid development of molecular biotechnology, the clustered regularly interspaced short palindromic repeats associated protein system has been widely used as a powerful gene editing tool due to its high efficiency, accuracy and flexibility. The CRISPR-Cas system makes a significant contribution to different aspects of livestock production by introducing site-specific modifications such as insertions, deletions or single base replacements at specific genomic sites. In terms of sheep production applications, by establishing animal models that improve production economic traits and disease resistance, the function of key genes can be studied to accelerate the improvement of traits, thereby accelerating the improvement of traits. In this review, we summarize the mechanism and function of CRISPR-Cas system and its application in the production of reproductive traits, meat use traits, wool production traits, lactation traits and disease resistance traits of sheep and the establishment of sheep animal models.
10.16288/j.yczz.24-155
Production of bioproducts through the use of transgenic animal models.
Keefer C L
Animal reproduction science
Transgenic livestock that produce recombinant proteins in their milk can provide an economic and safe system for production of valuable proteins, such as pharmaceutical proteins for treatment or prevention of human disease or biomaterials for medical use. This method of production is frequently referred to as biopharming. The promise of biopharming, that is the actual commercial production of pharmaceuticals and other bioproducts, is nearing fulfillment. Improvements in molecular and reproductive techniques and strong economic incentives have continued to drive the implementation of transgenic technology to domestic animals. Nuclear transfer using transgenic donor cells is rapidly becoming the predominant technique used in the production of transgenic livestock, replacing the direct injection of DNA into the zygotic pronuclei. Production of transgenic founder animals by nuclear transfer in combination with traditional reproductive technologies can result in the propagation of transgenic herds of sufficient size to meet market demands for commercially important proteins. While some of the companies that have established transgenic programs have run into setbacks owing to a combination of economic, scientific and regulatory difficulties, other companies are continuing to make significant advances. While further improvements are needed to increase efficiencies of production, economically viable production of recombinant proteins using livestock species is not only possible but should be a commercial reality in the very near future.
10.1016/j.anireprosci.2004.04.010
Application of new biotechnologies for improvements in swine nutrition and pork production.
Wu Guoyao,Bazer Fuller W
Journal of animal science and biotechnology
Meeting the increasing demands for high-quality pork protein requires not only improved diets but also biotechnology-based breeding to generate swine with desired production traits. Biotechnology can be classified as the cloning of animals with identical genetic composition or genetic engineering (via recombinant DNA technology and gene editing) to produce genetically modified animals or microorganisms. Cloning helps to conserve species and breeds, particularly those with excellent biological and economical traits. Recombinant DNA technology combines genetic materials from multiple sources into single cells to generate proteins. Gene (genome) editing involves the deletion, insertion or silencing of genes to produce: (a) genetically modified pigs with important production traits; or (b) microorganisms without an ability to resist antimicrobial substances. Current gene-editing tools include the use of zinc finger nuclease (ZFN), transcription activator-like effector nuclease (TALEN), or clustered regularly interspaced short palindromic repeats-associated nuclease-9 (CRISPR/Cas9) as editors. ZFN, TALEN, or CRISPR/Cas9 components are delivered into target cells through transfection (lipid-based agents, electroporation, nucleofection, or microinjection) or bacteriophages, depending on cell type and plasmid. Compared to the ZFN and TALEN, CRISPR/Cas9 offers greater ease of design and greater flexibility in genetic engineering, but has a higher frequency of off-target effects. To date, genetically modified pigs have been generated to express bovine growth hormone, bacterial phytase, fungal carbohydrases, plant and fatty acid desaturases, and uncoupling protein-1; and to lack myostatin, α-1,3-galactosyltransferase, or CD163 (a cellular receptor for the "blue ear disease" virus). Biotechnology holds promise in improving the efficiency of swine production and developing alternatives to antibiotics in the future.
10.1186/s40104-019-0337-6
Microbial Enterotypes Shape the Divergence in Gut Fermentation, Host Metabolism, and Growth Rate of Young Goats.
Microbiology spectrum
Enterotypes can be useful tools for studying the gut microbial community landscape, which is thought to play a crucial role in animal performance. However, few studies have been carried out to identify enterotypes and their associations with growth performance in young goats. In this study, two enterotypes were categorized in 76 goats: cluster 1 (=39) and cluster 2 (=37). Compared to cluster 2, cluster 1 had greater growth rates, the concentrations of acetate, propionate, valerate, and total volatile fatty acids (VFA) in the gut. Several serum glycolipid metabolism parameters, including glucose, total cholesterol, high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C), were also increased in cluster 1, while serum IgG was decreased in cluster 1. Using α-diversity analysis, we found a microbiome with lower richness and diversity in cluster 1. Some gut bacteria, including and several members of the family, were enriched in cluster 1, while , , and were enriched in cluster 2. A co-occurrence network analysis revealed that the differential interaction patterns existed in two enterotypes, and microbial function prediction suggested that some nutrient metabolism-related pathways, including amino acid biosynthesis and starch and sucrose metabolism, were enriched in cluster 1. Furthermore, a correlation analysis showed that enterotype-related bacteria were closely correlated with gut fermentation, serum biochemistry, and growth rate. Overall, our data provide a new perspective for understanding enterotype characteristics in goats, offering insights into important microbial interaction mechanisms for improving the growth performance of ruminant animals. The intricate relationships between a host animal and its resident gut microbiomes provide opportunities for dealing with energy efficiency and production challenges in the livestock industry. Here, we applied the enterotype concept to the gut microbiome in young goats and found that it can be classified into two enterotypes which are apparently associated with divergences in gut fermentation, blood biochemistry, and goat growth rates. The microbial co-occurrence networks and function predictions differed between the two enterotypes, suggesting that the formation of host phenotype may be modified by different bacterial features and complex bacterial interactions. The characteristics of enterotypes related to growth performance in young goats may enable us to improve long-term production performance in goat industry by modulating the gut microbiome during early life.
10.1128/spectrum.04818-22
Enhancing Animal Disease Resistance, Production Efficiency, and Welfare through Precise Genome Editing.
International journal of molecular sciences
The major goal of animal breeding is the genetic enhancement of economic traits. The CRISPR/Cas system, which includes nuclease-mediated and base editor mediated genome editing tools, provides an unprecedented approach to modify the mammalian genome. Thus, farm animal genetic engineering and genetic manipulation have been fundamentally revolutionized. Agricultural animals with traits of interest can be obtained in just one generation (and without long time selection). Here, we reviewed the advancements of the CRISPR (Clustered regularly interspaced short palindromic repeats)/Cas (CRISPR associated proteins) genome editing tools and their applications in animal breeding, especially in improving disease resistance, production performance, and animal welfare. Additionally, we covered the regulations on genome-edited animals (GEAs) and ways to accelerate their use. Recommendations for how to produce GEAs were also discussed. Despite the current challenges, we believe that genome editing breeding and GEAs will be available in the near future.
10.3390/ijms23137331