Enzymes-Assisted Extraction of Plants for Sustainable and Functional Applications.
International journal of molecular sciences
The scientific community and industrial companies have discovered significant enzyme applications to plant material. This rise imparts to changing consumers' demands while searching for 'clean label' food products, boosting the immune system, uprising resistance to bacterial and fungal diseases, and climate change challenges. First, enzymes were used for enhancing production yield with mild and not hazardous applications. However, enzyme specificity, activity, plant origin and characteristics, ratio, and extraction conditions differ depending on the goal. As a result, researchers have gained interest in enzymes' ability to cleave specific bonds of macroelements and release bioactive compounds by enhancing value and creating novel derivatives in plant extracts. The extract is enriched with reducing sugars, phenolic content, and peptides by disrupting lignocellulose and releasing compounds from the cell wall and cytosolic. Nonetheless, depolymerizing carbohydrates and using specific enzymes form and release various saccharides lengths. The latest studies show that oligosaccharides released and formed by enzymes have a high potential to be slowly digestible starches (SDS) and possibly be labeled as prebiotics. Additionally, they excel in new technological, organoleptic, and physicochemical properties. Released novel derivatives and phenolic compounds have a significant role in human and animal health and gut-microbiota interactions, affecting many metabolic pathways. The latest studies have contributed to enzyme-modified extracts and products used for functional, fermented products development and sustainable processes: in particular, nanocellulose, nanocrystals, nanoparticles green synthesis with drug delivery, wound healing, and antimicrobial properties. Even so, enzymes' incorporation into processes has limitations and is regulated by national and international levels.
10.3390/ijms23042359
Overexpression of OsNAR2.1 by OsNAR2.1 promoter increases drought resistance by increasing the expression of OsPLDα1 in rice.
BMC plant biology
BACKGROUND:pOsNAR2.1:OsNAR2.1 expression could significantly increase nitrogen uptake efficiency and grain yield of rice. RESULT:This study reported the effects of overexpression of OsNAR2.1 by OsNAR2.1 promoter on physiological and agronomic traits associated with drought tolerance. In comparison to the wild-type (WT), the pOsNAR2.1:OsNAR2.1 transgenic lines exhibited a significant improvement in survival rate when subjected to drought stress and then irrigation. Under limited water supply conditions, compared with WT, the photosynthesis and water use efficiency (WUE) of transgenic lines were increased by 39.2% and 28.8%, respectively. Finally, the transgenic lines had 25.5% and 66.4% higher grain yield than the WT under full watering and limited water supply conditions, respectively. Compared with the WT, the agronomic nitrogen use efficiency (NUE) of transgenic lines increased by 25.5% and 66.4% under full watering and limited water supply conditions, and the N recovery efficiency of transgenic lines increased by 29.3% and 50.2%, respectively. The interaction between OsNAR2.1 protein and OsPLDα1 protein was verified by yeast hybrids. After drought treatment, PLDα activity on the plasma membrane of the transgenic line increased 85.0% compared with WT. CONCLUSION:These results indicated that pOsNAR2.1:OsNAR2.1 expression could improve the drought resistance of rice by increasing nitrogen uptake and regulating the expression of OsPLDα1.
10.1186/s12870-024-05012-9
Allele exchange at the EPSPS locus confers glyphosate tolerance in cassava.
Plant biotechnology journal
Effective weed control can protect yields of cassava (Manihot esculenta) storage roots. Farmers could benefit from using herbicide with a tolerant cultivar. We applied traditional transgenesis and gene editing to generate robust glyphosate tolerance in cassava. By comparing promoters regulating expression of transformed 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) genes with various paired amino acid substitutions, we found that strong constitutive expression is required to achieve glyphosate tolerance during in vitro selection and in whole cassava plants. Using strategies that exploit homologous recombination (HR) and nonhomologous end-joining (NHEJ) DNA repair pathways, we precisely introduced the best-performing allele into the cassava genome, simultaneously creating a promoter swap and dual amino acid substitutions at the endogenous EPSPS locus. Primary EPSPS-edited plants were phenotypically normal, tolerant to high doses of glyphosate, with some free of detectable T-DNA integrations. Our methods demonstrate an editing strategy for creating glyphosate tolerance in crop plants and demonstrate the potential of gene editing for further improvement of cassava.
10.1111/pbi.12868
Engineering Herbicide-Tolerance Rice Expressing an Acetohydroxyacid Synthase with a Single Amino Acid Deletion.
Fang Jun,Wan Changzhao,Wang Wei,Ma Liuyin,Wang Xinqi,Cheng Can,Zhou Jihua,Qiao Yongjin,Wang Xiao
International journal of molecular sciences
The acetohydroxyacid synthase (AHAS) is an essential enzyme involved in branched amino acids. Several herbicides wither weeds via inhibiting AHAS activity, and the mutants show tolerance to these herbicides. However, most AHAS mutations are residue substitutions but not residue deletion. Here, residue deletion was used to engineering the gene and herbicide-tolerant rice. Molecular docking analysis predicted that the W548 of the AHAS was a residue deletion to generate herbicide tolerance. The AHAS-ΔW548 protein was generated in vitro to remove the W548 residue. Interestingly, the deletion led to the tetramer dissociation of the AHAS, while this dissociation did not reduce the activity of the AHAS. Moreover, the W548 deletion contributed to multi-family herbicides tolerance. Specially, it conferred more tolerance to sulfometuron-methyl and bispyribac-sodium than the W548L substitution. Further analysis revealed that AHAS-ΔW548 had the best performance on the sulfometuron-methyl tolerance compared to the wild-type control. Over-expression of the gene into rice led to the tolerance of multiple herbicides in the transgenic line. The T-DNA insertion and the herbicide treatment did not affect the agronomic traits and yields, while more branched-chain amino acids were detected in transgenic rice seeds. Residue deletion of W548 in the AHAS could be a useful strategy for engineering herbicide tolerant rice. The increase of branched-chain amino acids might improve the umami tastes of the rice.
10.3390/ijms21041265
Cross-family transfer of the Arabidopsis cell-surface immune receptor LORE to tomato confers sensing of 3-hydroxylated fatty acids and enhanced disease resistance.
Molecular plant pathology
Plant pathogens pose a high risk of yield losses and threaten food security. Technological and scientific advances have improved our understanding of the molecular processes underlying host-pathogen interactions, which paves the way for new strategies in crop disease management beyond the limits of conventional breeding. Cross-family transfer of immune receptor genes is one such strategy that takes advantage of common plant immune signalling pathways to improve disease resistance in crops. Sensing of microbe- or host damage-associated molecular patterns (MAMPs/DAMPs) by plasma membrane-resident pattern recognition receptors (PRR) activates pattern-triggered immunity (PTI) and restricts the spread of a broad spectrum of pathogens in the host plant. In the model plant Arabidopsis thaliana, the S-domain receptor-like kinase LIPOOLIGOSACCHARIDE-SPECIFIC REDUCED ELICITATION (AtLORE, SD1-29) functions as a PRR, which senses medium-chain-length 3-hydroxylated fatty acids (mc-3-OH-FAs), such as 3-OH-C10:0, and 3-hydroxyalkanoates (HAAs) of microbial origin to activate PTI. In this study, we show that ectopic expression of the Brassicaceae-specific PRR AtLORE in the solanaceous crop species Solanum lycopersicum leads to the gain of 3-OH-C10:0 immune sensing without altering plant development. AtLORE-transgenic tomato shows enhanced resistance against Pseudomonas syringae pv. tomato DC3000 and Alternaria solani NL03003. Applying 3-OH-C10:0 to the soil before infection induces resistance against the oomycete pathogen Phytophthora infestans Pi100 and further enhances resistance to A. solani NL03003. Our study proposes a potential application of AtLORE-transgenic crop plants and mc-3-OH-FAs as resistance-inducing biostimulants in disease management.
10.1111/mpp.70005
Phloem transport capacity of transgenic rice T1c-19 (Cry1C*) under several potassium fertilizer levels.
Ling Lin,Jiang Yang,Meng Jiao Jing,Cai Li Ming,Cao Gui Cou
PloS one
Genetic modification of Cry-proteins from Bacillus thuringiensis (Bt) is a common practice in economically important crops to improve insecticide resistance and reduce the use of pesticides. However, introduction of these genes can have unintended side effects, which should be closely monitored for effective breeding and crop management. To determine the potential cause of these negative effects, we explored assimilate partitioning in the transgenic Bt rice line T1c-19 (Cry1C*), which was compared with that of its wild-type counterpart Minghui 63 (MH63) under different potassium fertilization application treatment conditions. In a pot experiment, 0, 0.4, and 0.6 g K2O was applied per kg of dry soil to determine the phloem transport characteristics of the two rice lines. We used a variety of assessment indicators ranging from morphological to physiological aspects, including the number of large and small vascular bundles in the neck internode at the heading stage, the diameter and bleeding intensity of the neck internode at the filling stage, and the content and apparent ratio of transferred non-structural carbohydrates (NSC) in the culm and sheath from the heading to maturing stages. The K utilization and grain yield at the maturing stage were also concerned. Results presented that the mean setting rate and grain yield of T1c-19 (Cry1C*) decreased by 22.3% and 26.2% compared to those in MH63, respectively. Compared to MH63, the K concentration and accumulation were significantly higher in the culms and leaves, but significantly lower in grain of T1c-19 (Cry1C*). T1c-19 (Cry1C*) had less apparent NSC efflux in the culm and sheath, fewer small vascular bundles, and a smaller diameter and bleeding intensity of the neck internode than MH63. In addition, linear correlation analysis indicated that there were positive correlations among grain yield, setting rate, the apparent NSC efflux in the culm and sheath, number of small vascular bundles, and the neck internode diameter and bleeding intensity. These unintended effects may directly or indirectly be caused by insertion of exogenous Bt (Cry1C*) gene, which should be further considered in the future breeding of transgenic crops.
10.1371/journal.pone.0195058
CRISPR/Cas9-Mediated Generation of Pathogen-Resistant Tomato against and Powdery Mildew.
International journal of molecular sciences
Tomato is one of the major vegetable crops consumed worldwide. (TYLCV) and fungal sp. are devastating pathogens causing yellow leaf curl disease and powdery mildew. Such viral and fungal pathogens reduce tomato crop yields and cause substantial economic losses every year. Several commercial tomato varieties include () and () locus that carries the susceptibility (-gene) factors for TYLCV and powdery mildew, respectively. The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) is a valuable genome editing tool to develop disease-resistant crop varieties. In this regard, targeting susceptibility factors encoded by the host plant genome instead of the viral genome is a promising approach to achieve pathogen resistance without the need for stable inheritance of CRISPR components. In this study, the CRISPR/Cas9 system was employed to target the and for trait introgression in elite tomato cultivar BN-86 to confer host-mediated immunity against pathogens. -knockout lines were successfully generated, carrying the biallelic indel mutations. The pathogen resistance assays in mutant lines confirmed the suppressed accumulation of TYLCV and restricted the spread to non-inoculated plant parts. Generated knockout lines for the showed complete resistance to powdery mildew fungus. Overall, our results demonstrate the efficiency of the CRISPR/Cas9 system to introduce targeted mutagenesis for the rapid development of pathogen-resistant varieties in tomato.
10.3390/ijms22041878
Advances in S gene targeted genome-editing and its applicability to disease resistance breeding in selected crop plants.
Bioengineered
Genome-editing tools for the development of traits to tolerate abiotic and biotic adversaries are the recently devised breeding techniques revolutionizing molecular breeding by addressing the issues of rapidness and precision. To that end, disease resistance development by disrupting disease susceptibility genes (S genes) to intervene in the biological mechanism of pathogenicity has significantly improved the techniques of molecular breeding. Despite the achievements in genome-editing aimed at the intervention of the function of susceptibility determinants or gene regulatory elements, off-target effects associated with yield-related traits are still the main setbacks. The challenges are attributed to the complexity of the inheritance of traits controlled by pleiotropic genes. Therefore, a more rigorous genome-editing tool with ultra-precision and efficiency for the development of broad-spectrum and durable disease resistance applied to staple crop plants is of critical importance in molecular breeding programs. The main objective of this article is to review the most impressive progresses achieved in resistance breeding against the main diseases of three crops (potato, ; tomato, and pepper, ) using genome-editing by disrupting the sequences of S genes, their promoters, or pathogen genes. In this paper, we discussed the complexity and applicability of genome-editing tools, summarized the main disease of crops, and compiled the recent reports on disease resistance developed by S-gene silencing and their off-target effects. Moreover, GO count and gene annotation were made for pooled S-genes from biological databases. Achievements and prospects of S-gene-based next-generation breeding technologies are also discussed.
10.1080/21655979.2022.2099599
Safety of the proposed amendment of the specifications for steviol glycosides (E 960) as a food additive: Rebaudioside M produced via enzyme-catalysed bioconversion of purified stevia leaf extract.
EFSA journal. European Food Safety Authority
The EFSA Panel on Food Additives and Flavourings (FAF) provides a scientific opinion on the safety of the proposed amendment of the specifications for steviol glycosides (E 960) as a food additive, in particular related to rebaudioside M produced via enzyme-catalysed bioconversion of purified stevia leaf extract. Rebaudioside M (95% on dry basis) is produced via enzymatic bioconversion of purified stevia leaf extract using uridine diphosphate (UDP)-glucosyltransferase and sucrose synthase enzymes produced by the genetically modified yeasts UGT-a and UGT-b, that facilitates the transfer of glucose to purified stevia leaf extract via glycosidic bonds. The Panel considered that the parental strain ATCC 20864 qualifies for the qualified presumption of safety (QPS) approach for safety assessment and, therefore, is considered to be safe for production purposes. The Panel concluded that there is no safety concern for Rebaudioside M produced via enzymatic bioconversion of purified stevia leaf extract using UDP-glucosyltransferase and sucrose synthase enzymes produced by the genetically modified yeasts UGT-a and UGT-b, to be used as a food additive. However, the Panel recommended that the European Commission considers establishing separate specifications for Rebaudioside M produced via enzymatic bioconversion of purified stevia leaf extract in Commission Regulation (EU) No 231/2012.
10.2903/j.efsa.2019.5867
Disrupting Irreversible Bacterial Adhesion and Biofilm Formation with an Engineered Enzyme.
Mayton Holly M,Walker Sharon L,Berger Bryan W
Applied and environmental microbiology
Biofilm formation is often attributed to postharvest bacterial persistence on fresh produce and food handling surfaces. In this study, a predicted glycosyl hydrolase enzyme was expressed, purified, and validated for the removal of microbial biofilms from biotic and abiotic surfaces under conditions used for chemical cleaning agents. Crystal violet biofilm staining assays revealed that 0.1 mg/ml of enzyme inhibited up to 41% of biofilm formation by Escherichia coli O157:H7, E. coli 25922, Salmonella enterica serovar Typhimurium, and Listeria monocytogenes. Furthermore, the enzyme was effective at removing mature biofilms, providing a 35% improvement over rinsing with a saline solution alone. Additionally, a parallel-plate flow cell was used to directly observe and quantify the impact of enzyme rinses on E. coli O157:H7 cells adhering to spinach leaf surfaces. The presence of 1 mg/liter enzyme resulted in nearly 6-times-higher detachment rate coefficients than a deionized (DI) water rinse, while the total cells removed from the surface increased from 10% to 25% over the 30-min rinse time, reversing the initial phases of biofilm formation. Enzyme treatment of all 4 cell types resulted in significantly reduced cell surface hydrophobicity and collapse of negatively stained E. coli 25922 cells imaged by electron microscopy, suggesting potential polysaccharide surface modification of enzyme-treated bacteria. Collectively, these results point to the broad substrate specificity and robustness of the enzyme for different types of biofilm stages, solution conditions, and pathogen biofilm types and may be useful as a method for the removal or inhibition of bacterial biofilm formation. In this study, the ability of an engineered enzyme to reduce bacterial adhesion and biofilm formation of several foodborne pathogens was demonstrated, representing a promising option for enhancing or replacing chlorine and other chemical sanitizers in food processing applications. Specifically, significant reductions of biofilms of the pathogens Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes are observed, as are reductions in initial adhesion. Enzymes have the added benefits of being green, sustainable alternatives to chemical sanitizers, as well as having a minimal impact on food properties, in contrast to many alternative antimicrobial options such as bleach that aim to minimize food safety risks.
10.1128/AEM.00265-21
Microbial proteases: ubiquitous enzymes with innumerable uses.
Solanki Preeti,Putatunda Chayanika,Kumar Anil,Bhatia Ravi,Walia Abhishek
3 Biotech
Proteases are ubiquitous enzymes, having significant physiological roles in both synthesis and degradation. The use of microbial proteases in food fermentation is an age-old process, which is today being successfully employed in other industries with the advent of 'omics' era and innovations in genetic and protein engineering approaches. Proteases have found application in industries besides food, like leather, textiles, detergent, waste management, agriculture, animal husbandry, cosmetics, and pharmaceutics. With the rising demands and applications, researchers are exploring various approaches to discover, redesign, or artificially synthesize enzymes with better applicability in the industrial processes. These enzymes offer a sustainable and environmentally safer option, besides possessing economic and commercial value. Various bacterial and fungal proteases are already holding a commercially pivotal role in the industry. The current review summarizes the characteristics and types of proteases, microbial source, their current and prospective applications in various industries, and future challenges. Promoting these biocatalysts will prove significant in betterment of the modern world.
10.1007/s13205-021-02928-z
Sono-activation of food enzymes: From principles to practice.
Comprehensive reviews in food science and food safety
Over the last decade, sono-activation of enzymes as an emerging research area has received considerable attention from food researchers. This kind of relatively new application of ultrasound has demonstrated promising potential in facilitating the modern food industry by broadening the application of various food enzymes, improving relevant industrial unit operation and productivity, as well as increasing the yield of target products. This review aims to provide insight into the fundamental principles and possible industrialization strategies of the sono-activation of food enzymes to facilitate its commercialization. This review first provides an overview of ultrasound application in the activation of food protease, carbohydrase, and lipase. Then, the recent development on ultrasound activation of food enzymes is discussed on aspects including mechanisms, influencing factors, modification effects, and its applications in real food systems for free and immobilized enzymes. Despite the far fewer studies on sono-activation of immobilized enzymes compared with those on free enzymes, we endeavored to summarize the relevant aspects in three stages: ultrasound pretreatment of free enzyme/carrier, assistance in immobilization process, and modification of the already immobilized enzyme. Lastly, challenges for the scalability of ultrasound in these target areas are discussed and future research prospects are proposed.
10.1111/1541-4337.13108
Waste Management in the Agri-Food Industry: The Conversion of Eggshells, Spent Coffee Grounds, and Brown Onion Skins into Carriers for Lipase Immobilization.
Budžaki Sandra,Velić Natalija,Ostojčić Marta,Stjepanović Marija,Rajs Blanka Bilić,Šereš Zita,Maravić Nikola,Stanojev Jovana,Hessel Volker,Strelec Ivica
Foods (Basel, Switzerland)
One of the major challenges in sustainable waste management in the agri-food industry following the "zero waste" model is the application of the circular economy strategy, including the development of innovative waste utilization techniques. The conversion of agri-food waste into carriers for the immobilization of enzymes is one such technique. Replacing chemical catalysts with immobilized enzymes (i.e., immobilized/heterogeneous biocatalysts) could help reduce the energy efficiency and environmental sustainability problems of existing chemically catalysed processes. On the other hand, the economics of the process strongly depend on the price of the immobilized enzyme. The conversion of agricultural and food wastes into low-cost enzyme carriers could lead to the development of immobilized enzymes with desirable operating characteristics and subsequently lower the price of immobilized enzymes for use in biocatalytic production. In this context, this review provides insight into the possibilities of reusing food industry wastes, namely, eggshells, coffee grounds, and brown onion skins, as carriers for lipase immobilization.
10.3390/foods11030409
Advances in the understanding of the production, modification and applications of xylanases in the food industry.
Enzyme and microbial technology
Xylanases have broad applications in the food industry to decompose the complex carbohydrate xylan. This is applicable to enhance juice clarity, improve dough softness, or reduce beer turbidity. It can also be used to produce prebiotics and increase the nutritional value in foodstuff. However, the low yield and poor stability of most natural xylanases hinders their further applications. Therefore, it is imperative to explore higher-quality xylanases to address the potential challenges that appear in the food industry and to comprehensively improve the production, modification, and utilization of xylanases. Xylanases, due to their various sources, exhibit diverse characteristics that affect production and activity. Most fungi are suitable for solid-state fermentation to produce xylanases, but in liquid fermentation, microbial metabolism is more vigorous, resulting in higher yield. Fungi produce higher xylanase activity, but bacterial xylanases perform better than fungal ones under certain extreme conditions (high temperature, extreme pH). Gene and protein engineering technology helps to improve the production efficiency of xylanases and enhances their thermal stability and catalytic properties.
10.1016/j.enzmictec.2024.110473
State-of-the-art strategies and applied perspectives of enzyme biocatalysis in food sector - current status and future trends.
Bilal Muhammad,Iqbal Hafiz M N
Critical reviews in food science and nutrition
With the recent progress in biotechnology, a wide variety of novel enzymes with unique physicochemical properties and diverse applications has been introduced, and new application list continues to extend in the future. Enzymes obtained from microorganisms, including bacteria, fungi, yeast are widely applied in numerous food formulations for intensifying their texture and taste. Owing to several desirable characteristics such as easy, cost-efficient and stable production, microbial-derived enzymes are preferred source in contrast to animals or plants. Enzymatic processes have a considerable impact in controlling the characteristics such as (1) physiochemical properties, (2) rheological functionalities, (3) facile process as compared to the chemical-based processing, (4) no or minimal consumption of harsh chemicals, (5) overall cost-effective ratio, (6) sensory and flavor qualities, and (7) intensifying the stability, shelf life and overall quality of the product, etc. in the food industry. Also, enzyme-catalyzed processing has also been designed for new food applications such as extraction of bioactive compounds, nutrient-rich and texture improved foods production, and eliminating food safety hazards. Herein, we reviewed recent applications of food-processing enzymes and highlighted promising technologies to diversify their application range in food industries. Immobilization technology enabled biocatalysts to be used cost-effectively due to reusability with negligible or no activity loss. Integrated progress in novel enzyme discovery, and recombinant DNA technology, as well as protein engineering and bioprocess engineering strategies, are believed to rapidly propagate biocatalysis at industrial-scale food processing or green and sustainable chemical manufacturing.
10.1080/10408398.2019.1627284
Transglutaminase in Foods and Biotechnology.
International journal of molecular sciences
Stabilization and reusability of enzyme transglutaminase (TGM) are important goals for the enzymatic process since immobilizing TGM plays an important role in different technologies and industries. TGM can be used in many applications. In the food industry, it plays a role as a protein-modifying enzyme, while, in biotechnology and pharmaceutical applications, it is used in mediated bioconjugation due to its extraordinary crosslinking ability. TGMs (EC 2.3.2.13) are enzymes that catalyze the formation of a covalent bond between a free amino group of protein-bound or peptide-bound lysine, which acts as an acyl acceptor, and the γ-carboxamide group of protein-bound or peptide-bound glutamine, which acts as an acyl donor. This results in the modification of proteins through either intramolecular or intermolecular crosslinking, which improves the use of the respective proteins significantly.
10.3390/ijms241512402
Immobilization of β-galactosidase from Bacillus licheniformis for application in the dairy industry.
Kuribayashi Lilian Mayumi,do Rio Ribeiro Victoria Pires,de Santana Ricardo Corrêa,Ribeiro Eloízio Júlio,Dos Santos Milla Gabriela,Falleiros Larissa Nayhara Soares Santana,Guidini Carla Zanella
Applied microbiology and biotechnology
The food industry has developed a wide range of products with reduced lactose to allow people with intolerance to consume dairy products. Although β-galactosidase has extensive applications in the food, pharma, and biotechnology industries, the enzymes are high-cost catalysts, and their use makes the process costly. Immobilization is a viable strategy for enzyme retention inside a reactor, allowing its reuse and application in continuous processes. Here, we studied the immobilization of β-galactosidase from Bacillus licheniformis in ion exchange resin. A central composite rotational design (CCRD) was proposed to evaluate the immobilization process in relation to three immobilization solution variables: offered enzyme activity, ionic strength, and pH. The conditions that maximized the response were offered enzyme activity of 953 U, 40 mM ionic strength, and pH 4.0. Subsequently, experiments were performed to provide additional stabilization for biocatalyst, using a buffer solution pH 9.0 at 25 °C for 24 h, and crosslinking with different concentrations of glutaraldehyde. The stabilization step drastically impacted the activity of the immobilized enzyme, and the reticulation with different concentrations of glutaraldehyde showed significant influence on the activity of the immobilized enzyme. In spite of substantially affecting the initial activity of the immobilized enzyme, higher reagent concentrations (3.5 g L) were effective for maintaining stability related to the number of cycles of the enzyme immobilized. The β-galactosidase from Bacillus licheniformis immobilized in Duolite A568 is a promising technique to produce reduced or lactose-free dairy products, as it allows reuse of the biocatalyst, decreasing operational costs.Key Points• Immobilization of β-galactosidase from Bacillus licheniformis in batch reactor• Influence of buffer pH and ionic concentration and offered enzyme activity on immobilization• Influence of glutaraldehyde on operational stability.
10.1007/s00253-021-11325-8
Application of enzymes in food processing.
James J,Simpson B K
Critical reviews in food science and nutrition
Enzymes offer potential for many exciting applications for the improvement of foods. There is still, however, a long way to go in realizing this potential. Economic factors such as achievement of optimum yields and efficient recovery of desired protein are the main deterrents in the use of enzymes. Changing values in society with respect to recombinant DNA and protein engineering technologies and the growing need to explore all alternative food sources may in time make enzyme applications more attractive to the food industry. Research is continuing on the commercially viable enzymes in use today to improve various properties such as thermostabilities, specificities, and catalytic efficiencies. New and unique enzymes continue to be developed for use in enzymatic reactions to produce food ingredients by hydrolysis, synthesis, or biocatalysis. An aggressive approach is needed to open new opportunities for enzyme applications that can benefit the food industry.
10.1080/10408399609527735
Potential applications of carbohydrases immobilization in the food industry.
International journal of molecular sciences
Carbohydrases find a wide application in industrial processes and products, mainly in the food industry. With these enzymes, it is possible to obtain different types of sugar syrups (viz. glucose, fructose and inverted sugar syrups), prebiotics (viz. galactooligossacharides and fructooligossacharides) and isomaltulose, which is an interesting sweetener substitute for sucrose to improve the sensory properties of juices and wines and to reduce lactose in milk. The most important carbohydrases to accomplish these goals are of microbial origin and include amylases (α-amylases and glucoamylases), invertases, inulinases, galactosidases, glucosidases, fructosyltransferases, pectinases and glucosyltransferases. Yet, for all these processes to be cost-effective for industrial application, a very efficient, simple and cheap immobilization technique is required. Immobilization techniques can involve adsorption, entrapment or covalent bonding of the enzyme into an insoluble support, or carrier-free methods, usually based on the formation of cross-linked enzyme aggregates (CLEAs). They include a broad variety of supports, such as magnetic materials, gums, gels, synthetic polymers and ionic resins. All these techniques present advantages and disadvantages and several parameters must be considered. In this work, the most recent and important studies on the immobilization of carbohydrases with potential application in the food industry are reviewed.
10.3390/ijms14011335
Pullulanase: unleashing the power of enzyme with a promising future in the food industry.
Frontiers in bioengineering and biotechnology
Pullulanases are the most important industrial group of enzymes in family 13 glycosyl hydrolases. They hydrolyze either α-1,6 and α-1,4 or both glycosidic bonds in pullulan as well as other carbohydrates to produce glucose, maltose, and maltotriose syrups, which have important uses in food and other related sectors. However, very less reports are available on pullulanase production from native strains because of low yield issues. In line with the increasing demands for pullulanase, it has become important to search for novel pullulanase-producing microorganisms with high yields. Moreover, high production costs and low yield are major limitations in the industrial production of pullulanase enzymes. The production cost of pullulanase by using the solid-state fermentation (SSF) process can be minimized by selecting agro-industrial waste. This review summarizes the types, sources, production strategies, and potential applications of pullulanase in different food and other related industries. Researchers should focus on fungal strains producing pullulanase for better yield and low production costs by using agro-waste. It will prove a better enzyme in different food processing industries and will surely reduce the cost of products.
10.3389/fbioe.2023.1139611
Advances in Genetic Engineering Technology and Its Application in the Industrial Fungus .
Jin Feng-Jie,Hu Shuang,Wang Bao-Teng,Jin Long
Frontiers in microbiology
The filamentous fungus is an important strain in the traditional fermentation and food processing industries and is often used in the production of soy sauce, soybean paste, and liquor-making. In addition, has a strong capacity to secrete large amounts of hydrolytic enzymes; therefore, it has also been used in the enzyme industry as a cell factory for the production of numerous native and heterologous enzymes. However, the production and secretion of foreign proteins by are often limited by numerous bottlenecks that occur during transcription, translation, protein folding, translocation, degradation, transport, secretion, etc. The existence of these problems makes it difficult to achieve the desired target in the production of foreign proteins by . In recent years, with the decipherment of the whole genome sequence, basic research and genetic engineering technologies related to the production and utilization of have been well developed, such as the improvement of homologous recombination efficiency, application of selectable marker genes, development of large chromosome deletion technology, utilization of hyphal fusion techniques, and application of CRISPR/Cas9 genome editing systems. The development and establishment of these genetic engineering technologies provided a great deal of technical support for the industrial production and application of . This paper reviews the advances in basic research and genetic engineering technologies of the fermentation strain mentioned above to open up more effective ways and research space for the breeding of production strains in the future.
10.3389/fmicb.2021.644404
The potential use of for the food industry.
Critical reviews in food science and nutrition
is a gram-negative facultative anaerobic spore, which is generally recognized as a safe. As a promising ethanologenic organism for large-scale bio-ethanol production, has also shown a good application prospect in food processing and food additive synthesis for its unique physiological characteristics and excellent industrial characteristics. It not only has obvious advantages in food processing and becomes the biorefinery chassis cell for food additives, but also has a certain healthcare effect on human health. Until to now, most of the research is still in theory and laboratory scale, and further research is also needed to achieve industrial production. This review summarized the physiological characteristics and advantages of in food industry for the first time and further expounds its research status in food industry from three aspects of food additive synthesis, fermentation applications, and prebiotic efficacy, it will provide a theoretical basis for its development and applications in food industry. This review also discussed the shortcomings of its practical applications in the current food industry, and explored other ways to broaden the applications of in the food industry, to promote its applications in food processing.
10.1080/10408398.2022.2139221
Recent advances in the application of xylanases in the food industry and production by actinobacteria: A review.
Food research international (Ottawa, Ont.)
The microbial production of enzymes has been gaining prominence in the industry, because, in addition to presenting specificity and acting in mild reaction conditions, they can also be considered eco-friendly. An example with growing importance for the food industry is xylanases, which are prominent in beverage processing, bakery products and the production of emerging prebiotics. Microorganisms of the phylum Actinobacteria are promising sources for the production of these enzymes, however few studies in the literature report investigations on the production of xylanases by actinobacteria. This review brings together important information on the production of xylanases by actinobacteria and recent advances in the use of the enzyme in the food industry.
10.1016/j.foodres.2022.112103
Application of Iron Nanoparticle-Based Materials in the Food Industry.
Materials (Basel, Switzerland)
Due to their different properties compared to other materials, nanoparticles of iron and iron oxides are increasingly used in the food industry. Food technologists have especially paid attention to their ease of separation by magnetic fields and biocompatibility. Unfortunately, the consumption of increasing amounts of nanoparticles has raised concerns about their biotoxicity. Hence, knowledge about the applicability of iron nanoparticle-based materials in the food industry is needed not only among scientists, but also among all individuals who are involved in food production. The first part of this article describes typical methods of obtaining iron nanoparticles using chemical synthesis and so-called green chemistry. The second part of this article describes the use of iron nanoparticles and iron nanoparticle-based materials for active packaging, including the ability to eliminate oxygen and antimicrobial activity. Then, the possibilities of using the magnetic properties of iron nano-oxides for enzyme immobilization, food analysis, protein purification and mycotoxin and histamine removal from food are described. Other described applications of materials based on iron nanoparticles are the production of artificial enzymes, process control, food fortification and preserving food in a supercooled state. The third part of the article analyzes the biocompatibility of iron nanoparticles, their impact on the human body and the safety of their use.
10.3390/ma16020780
An overview of Bacillus proteases: from production to application.
Contesini Fabiano Jares,Melo Ricardo Rodrigues de,Sato Hélia Harumi
Critical reviews in biotechnology
Proteases have a broad range of applications in industrial processes and products and are representative of most worldwide enzyme sales. The genus Bacillus is probably the most important bacterial source of proteases and is capable of producing high yields of neutral and alkaline proteolytic enzymes with remarkable properties, such as high stability towards extreme temperatures, pH, organic solvents, detergents and oxidizing compounds. Therefore, several strategies have been developed for the cost-effective production of Bacillus proteases, including optimization of the fermentation parameters. Moreover, there are many studies on the use of low-cost substrates for submerged and solid state fermentation. Other alternatives include genetic tools such as protein engineering in order to obtain more active and stable proteases and strain engineering to better secrete recombinant proteases from Bacillus through homologous and heterologous protein expression. There has been extensive research on proteases because of the broad number of applications for these enzymes, such as in detergent formulations for the removal of blood stains from fabrics, production of bioactive peptides, food processing, enantioselective reactions, and dehairing of skins. Moreover, many commercial proteases have been characterized and purified from different Bacillus species. Therefore, this review highlights the production, purification, characterization, and application of proteases from a number of Bacillus species.
10.1080/07388551.2017.1354354
Enzyme engineering and its industrial applications.
Victorino da Silva Amatto Isabela,Gonsales da Rosa-Garzon Nathalia,Antônio de Oliveira Simões Flávio,Santiago Fernanda,Pereira da Silva Leite Nathália,Raspante Martins Júlia,Cabral Hamilton
Biotechnology and applied biochemistry
Recently, there has been an increase in the demand for enzymes with modified activity, specificity, and stability. Enzyme engineering is an important tool to meet the demand for enzymes adjusted to different industrial processes. Knowledge of the structure and function of enzymes guides the choice of the best strategy for engineering enzymes. Each enzyme engineering strategy, such as rational design, directed evolution, and semi-rational design, has specific applications, as well as limitations, which must be considered when choosing a suitable strategy. Engineered enzymes can be optimized for different industrial applications by choosing the appropriate strategy. This review features engineered enzymes that have been applied in food, animal feed, pharmaceuticals, medical applications, bioremediation, biofuels, and detergents.
10.1002/bab.2117
Combating biofilms of foodborne pathogens with bacteriocins by lactic acid bacteria in the food industry.
Comprehensive reviews in food science and food safety
Most foodborne pathogens have biofilm-forming capacity and prefer to grow in the form of biofilms. Presence of biofilms on food contact surfaces can lead to persistence of pathogens and the recurrent cross-contamination of food products, resulting in serious problems associated with food safety and economic losses. Resistance of biofilm cells to conventional sanitizers urges the development of natural alternatives to effectively inhibit biofilm formation and eradicate preformed biofilms. Lactic acid bacteria (LAB) produce bacteriocins which are ribosomally synthesized antimicrobial peptides, providing a great source of nature antimicrobials with the advantages of green and safe properties. Studies on biofilm control by newly identified bacteriocins are increasing, targeting primarily onListeria monocytogenes, Staphylococcus aureus, Salmonella, and Escherichia coli. This review systematically complies and assesses the antibiofilm property of LAB bacteriocins in controlling foodborne bacterial-biofilms on food contact surfaces. The bacteriocin-producing LAB genera/species, test method (inhibition and eradication), activity spectrum and surfaces are discussed, and the antibiofilm mechanisms are also argued. The findings indicate that bacteriocins can effectively inhibit biofilm formation in a dose-dependent manner, but are difficult to disrupt preformed biofilms. Synergistic combination with other antimicrobials, incorporation in nanoconjugates and implementation of bioengineering can help to strengthen their antibiofilm activity. This review provides an overview of the potential and application of LAB bacteriocins in combating bacterial biofilms in food processing environments, assisting in the development and widespread use of bacteriocin as a promising antibiofilm-agent in food industries.
10.1111/1541-4337.12922
Metabolism Characteristics of Lactic Acid Bacteria and the Expanding Applications in Food Industry.
Wang Yaqi,Wu Jiangtao,Lv Mengxin,Shao Zhen,Hungwe Meluleki,Wang Jinju,Bai Xiaojia,Xie Jingli,Wang Yanping,Geng Weitao
Frontiers in bioengineering and biotechnology
Lactic acid bacteria are a kind of microorganisms that can ferment carbohydrates to produce lactic acid, and are currently widely used in the fermented food industry. In recent years, with the excellent role of lactic acid bacteria in the food industry and probiotic functions, their microbial metabolic characteristics have also attracted more attention. Lactic acid bacteria can decompose macromolecular substances in food, including degradation of indigestible polysaccharides and transformation of undesirable flavor substances. Meanwhile, they can also produce a variety of products including short-chain fatty acids, amines, bacteriocins, vitamins and exopolysaccharides during metabolism. Based on the above-mentioned metabolic characteristics, lactic acid bacteria have shown a variety of expanded applications in the food industry. On the one hand, they are used to improve the flavor of fermented foods, increase the nutrition of foods, reduce harmful substances, increase shelf life, and so on. On the other hand, they can be used as probiotics to promote health in the body. This article reviews and prospects the important metabolites in the expanded application of lactic acid bacteria from the perspective of bioengineering and biotechnology.
10.3389/fbioe.2021.612285
Cell Sources for Cultivated Meat: Applications and Considerations throughout the Production Workflow.
International journal of molecular sciences
Cellular agriculture is an emerging scientific discipline that leverages the existing principles behind stem cell biology, tissue engineering, and animal sciences to create agricultural products from cells in vitro. Cultivated meat, also known as clean meat or cultured meat, is a prominent subfield of cellular agriculture that possesses promising potential to alleviate the negative externalities associated with conventional meat production by producing meat in vitro instead of from slaughter. A core consideration when producing cultivated meat is cell sourcing. Specifically, developing livestock cell sources that possess the necessary proliferative capacity and differentiation potential for cultivated meat production is a key technical component that must be optimized to enable scale-up for commercial production of cultivated meat. There are several possible approaches to develop cell sources for cultivated meat production, each possessing certain advantages and disadvantages. This review will discuss the current cell sources used for cultivated meat production and remaining challenges that need to be overcome to achieve scale-up of cultivated meat for commercial production. We will also discuss cell-focused considerations in other components of the cultivated meat production workflow, namely, culture medium composition, bioreactor expansion, and biomaterial tissue scaffolding.
10.3390/ijms22147513
Natural antimicrobial oligosaccharides in the food industry.
International journal of food microbiology
An increase in the number of antibiotic resistance genes burdens the environment and affects human health. Additionally, people have developed a cautious attitude toward chemical preservatives. This attitude has promoted the search for new natural antimicrobial substances. Oligosaccharides from various sources have been studied for their antimicrobial and prebiotic effects. Antimicrobial oligosaccharides have several advantages such as being produced from renewable resources and showing antimicrobial properties similar to those of chemical preservatives. Their excellent broad-spectrum antibacterial properties are primarily because of various synergistic effects, including destruction of pathogen cell wall. Additionally, the adhesion of harmful microorganisms and the role of harmful factors may be reduced by oligosaccharides. Some natural oligosaccharides were also shown to stimulate the growth probiotic organisms. Therefore, antimicrobial oligosaccharides have the potential to meet food processing industry requirements in the future. The latest progress in research on the antimicrobial activity of different oligosaccharides is demonstrated in this review. The possible mechanism of action of these antimicrobial oligosaccharides is summarized with respect to their direct and indirect effects. Finally, the extended applications of oligosaccharides from the food source industry to food processing are discussed.
10.1016/j.ijfoodmicro.2022.110021
After a century of nisin research - where are we now?
FEMS microbiology reviews
It is almost a century since nisin was discovered in fermented milk cultures, coincidentally in the same year that penicillin was first described. Over the last 100 years this small, highly modified pentacyclic peptide has not only found success in the food industry as a preservative but has also served as the paradigm for our understanding of the genetic organization, expression, and regulation of genes involved in lantibiotic biosynthesis-one of the few cases of extensive post-translation modification in prokaryotes. Recent developments in understanding the complex biosynthesis of nisin have shed light on the cellular location of the modification and transport machinery and the co-ordinated series of spatio-temporal events required to produce active nisin and provide resistance and immunity. The continued unearthing of new natural variants from within human and animal gastrointestinal tracts has sparked interest in the potential application of nisin to influence the microbiome, given the growing recognition of the role the gastrointestinal microbiota plays in health and disease. Moreover, interdisciplinary approaches have taken advantage of biotechnological advancements to bioengineer nisin to produce novel variants and expand nisin functionality for applications in the biomedical field. This review will discuss the latest progress in these aspects of nisin research.
10.1093/femsre/fuad023
Citric acid from : a comprehensive overview.
Behera Bikash Chandra
Critical reviews in microbiology
Microbial citric acid has high economic importance and widely used in beverage, food, detergents, cosmetics and pharmaceutical industries. The filamentous fungus is a work horse and important cell factory in industry for the production of citric acid. Although in-depth literatures and reviews have been published to explain the biochemistry, biotechnology and genetic engineering study of citric acid production by separately but the present review compiled, all the aspects with upto date brief summary of the subject describing microorganisms, substrates and their pre-treatment, screening, fermentation techniques, metabolic engineering, biochemistry, product recovery and numerous biotechnological application of citric acid for simple understanding of microbial citric acid production. The availability of genome sequence of this organism has facilitated numerous studies in gene function, gene regulation, primary and secondary metabolism. An attempt has been also made to address the molecular mechanisms and application of recent advanced techniques such as CRISPR/Cas9 systems in enhancement of citric acid production.
10.1080/1040841X.2020.1828815