NPM1-mutated acute myeloid leukemia: from bench to bedside.
Falini Brunangelo,Brunetti Lorenzo,Sportoletti Paolo,Martelli Maria Paola
Blood
The nucleophosmin (NPM1) gene encodes for a multifunctional protein with prominent nucleolar localization that shuttles between nucleus and cytoplasm. NPM1 mutations represent the most common genetic lesion in adult acute myeloid leukemia (AML; about one third of cases), and they act deterministically to cause the aberrant cytoplasmic delocalization of NPM1 mutants. Because of its unique features, NPM1-mutated AML is recognized as a distinct entity in the 2017 World Health Organization (WHO) classification of hematopoietic neoplasms. Here, we focus on recently identified functions of wild-type NPM1 in the nucleolus and address new biological and clinical issues related to NPM1-mutated AML. The relevance of the cooperation between NPM1 and other mutations in driving AML with different outcomes is presented. We also discuss the importance of eradicating NPM1-mutated clones to achieve AML cure and the impact of preleukemic clonal hematopoiesis persistence in predisposing to second AML. The contribution of HOX genes' expression to the development of NPM1-mutated AML is also highlighted. Clinically, yet unsolved diagnostic issues in the 2017 WHO classification of myeloid neoplasms and the importance of NPM1 mutations in defining the framework of European LeukemiaNet genetic-based risk stratification are discussed. Finally, we address the value and limits of NPM1-based measurable residual disease assessment for treatment guidance and present the results of promising preclinical studies with XPO1 and menin-MLL inhibitors.
10.1182/blood.2019004226
Driver mutations in acute myeloid leukemia.
Current opinion in hematology
PURPOSE OF REVIEW:The mutational landscape of acute myeloid leukemia (AML) has revised diagnostic, prognostic, and therapeutic schemata over the past decade. Recurrently mutated AML genes have functional consequences beyond typical oncogene-driven growth and loss of tumor suppresser function. RECENT FINDINGS:Large-scale genomic sequencing efforts have mapped the complexity of AML and trials of mutation-based targeted therapy has led to several FDA-approved drugs for mutant-specific AML. However, many recurrent mutations have been identified across a spectrum from clonal hematopoiesis to myelodysplasia to overt AML, such as effectors of DNA methylation, chromatin modifiers, and spliceosomal machinery. The functional effects of these mutations are the basis for substantial discovery. SUMMARY:Understanding the molecular and pathophysiologic functions of key genes that exert leukemogenic potential is essential towards translating these findings into better treatment for AML.
10.1097/MOH.0000000000000567