logo logo
Structural connectivity differences in left and right temporal lobe epilepsy. Besson Pierre,Dinkelacker Vera,Valabregue Romain,Thivard Lionel,Leclerc Xavier,Baulac Michel,Sammler Daniela,Colliot Olivier,Lehéricy Stéphane,Samson Séverine,Dupont Sophie NeuroImage Our knowledge on temporal lobe epilepsy (TLE) with hippocampal sclerosis has evolved towards the view that this syndrome affects widespread brain networks. Diffusion weighted imaging studies have shown alterations of large white matter tracts, most notably in left temporal lobe epilepsy, but the degree of altered connections between cortical and subcortical structures remains to be clarified. We performed a whole brain connectome analysis in 39 patients with refractory temporal lobe epilepsy and unilateral hippocampal sclerosis (20 right and 19 left) and 28 healthy subjects. We performed whole-brain probabilistic fiber tracking using MRtrix and segmented 164 cortical and subcortical structures with Freesurfer. Individual structural connectivity graphs based on these 164 nodes were computed by mapping the mean fractional anisotropy (FA) onto each tract. Connectomes were then compared using two complementary methods: permutation tests for pair-wise connections and Network Based Statistics to probe for differences in large network components. Comparison of pair-wise connections revealed a marked reduction of connectivity between left TLE patients and controls, which was strongly lateralized to the ipsilateral temporal lobe. Specifically, infero-lateral cortex and temporal pole were strongly affected, and so was the perisylvian cortex. In contrast, for right TLE, focal connectivity loss was much less pronounced and restricted to bilateral limbic structures and right temporal cortex. Analysis of large network components revealed furthermore that both left and right hippocampal sclerosis affected diffuse global and interhemispheric connectivity. Thus, left temporal lobe epilepsy was associated with a much more pronounced pattern of reduced FA, that included major landmarks of perisylvian language circuitry. These distinct patterns of connectivity associated with unilateral hippocampal sclerosis show how a focal pathology influences global network architecture, and how left or right-sided lesions may have differential and specific impacts on cerebral connectivity. 10.1016/j.neuroimage.2014.04.071
Interhemispheric functional connectivity asymmetry is distinctly affected in left and right mesial temporal lobe epilepsy. Brain and behavior INTRODUCTION:The differences of functional connectivity (FC) and functional asymmetry between left and right mesial temporal lobe epilepsy with hippocampal sclerosis (LMTLE and RMTLE) have not been completely clarified yet. The purpose of the present study is to investigate the FC changes and the FC asymmetric patterns of MTLE, and to compare the differences in FC and functional asymmetry between LMTLE and RMTLE. METHODS:In total, 12 LMTLE, 11 RMTLE patients, and 23 healthy controls (HC) were included. Region of interest (ROI)-based analysis was used to evaluate FC. The right functional connectivity (rFC) and left functional connectivity (lFC) of each ROI were calculated. Asymmetry index (AI) was calculated based on the following formula: . Paired t-test and univariate analysis of variance were used to analyze FC asymmetry. Linear correlation analysis was performed between significant FC changes and lateralized ROIs and epilepsy onset age and duration. RESULTS:LMTLE and RMTLE patients showed different patterns of alteration in FC and functional asymmetry when compared with controls. RMTLE presented more extensive FC abnormalities than LMTLE. Regions in ipsilateral temporal lobe presented as central regions of abnormalities in both patient groups. In addition, the asymmetric characteristics of FC were reduced in MTLE compared with HC, with even more pronounced reduction for RMTLE group. Meanwhile, ROIs presented FC AI differences among the three groups were mostly involving left temporal lobe (L_hippo, L_amyg, L_TP, L_aMTG, and L_pTFusC). No correlation was found between significant FC changes and lateralized ROIs and epilepsy onset age and duration. CONCLUSION:The FC and asymmetric features of MTLE are altered and involve both the temporal lobe and extra-temporal lobe. Furthermore, the altered FC and asymmetric features were distinctly affected in LMTLE and RMTLE compared to controls. 10.1002/brb3.2484
Distinct limbic connectivity in left and right benign mesial temporal lobe epilepsy: Evidence from a resting state functional MRI study. Frontiers in neurology Background:Functional connectivity (FC) studies showed that pharmaco-resistant mesial temporal lobe epilepsy (MTLE) affects not only the limbic system, but also several extra-limbic regions, including areas belonging to resting state networks. Less is known about FC in subjects with benign MTLE (i.e., sensitive to antiseizure medication, bMTLE). Aim and methods:We evaluated FC of hippocampus and amygdala in subjects with bMTLE, distinguished based on the epileptic focus lateralization. We enrolled 19 patients (10 with left and 9 with right bMTLE) and 10 age-matched healthy subjects. Connectivity was investigated at rest by using a seed-based regression analyses approach with four regions of interest (left and right hippocampus, left and right amygdala). Patients were also tested with a neuropsychological battery and their scores were correlated with fMRI data. Results and conclusions:Our study documented an asymmetrical disruption of FC in bMTLE, in relation to the side of the focus. Right subjects only exhibited limited altered connections, while left subjects-who performed worse in verbal memory tests-showed a wide bilateral hypoconnectivity of hippocampus and amygdala with areas belonging to language and memory network. The strength of FC between left limbic areas and language and memory network correlated with better performances in verbal memory tests. Moreover, we observed an increased FC with areas of default mode network, more pronounced in left subjects, a possible attempt to compensate cognitive deficit but without effectiveness.We believe that these findings could help to better characterize bMTLE, in which a dysfunction of limbic connectivity is detectable despite well-controlled epilepsy. 10.3389/fneur.2022.943660
Insights into Intrinsic Brain Networks based on Graph Theory and PET in right- compared to left-sided Temporal Lobe Epilepsy. Vanicek Thomas,Hahn Andreas,Traub-Weidinger Tatjana,Hilger Eva,Spies Marie,Wadsak Wolfgang,Lanzenberger Rupert,Pataraia Ekaterina,Asenbaum-Nan Susanne Scientific reports The human brain exhibits marked hemispheric differences, though it is not fully understood to what extent lateralization of the epileptic focus is relevant. Preoperative [(18)F]FDG-PET depicts lateralization of seizure focus in patients with temporal lobe epilepsy and reveals dysfunctional metabolic brain connectivity. The aim of the present study was to compare metabolic connectivity, inferred from inter-regional [(18)F]FDG PET uptake correlations, in right-sided (RTLE; n = 30) and left-sided TLE (LTLE; n = 32) with healthy controls (HC; n = 31) using graph theory based network analysis. Comparing LTLE and RTLE and patient groups separately to HC, we observed higher lobar connectivity weights in RTLE compared to LTLE for connections of the temporal and the parietal lobe of the contralateral hemisphere (CH). Moreover, especially in RTLE compared to LTLE higher local efficiency were found in the temporal cortices and other brain regions of the CH. The results of this investigation implicate altered metabolic networks in patients with TLE specific to the lateralization of seizure focus, and describe compensatory mechanisms especially in the CH of patients with RTLE. We propose that graph theoretical analysis of metabolic connectivity using [(18)F]FDG-PET offers an important additional modality to explore brain networks. 10.1038/srep28513
Large-scale brain networks are distinctly affected in right and left mesial temporal lobe epilepsy. de Campos Brunno Machado,Coan Ana Carolina,Lin Yasuda Clarissa,Casseb Raphael Fernandes,Cendes Fernando Human brain mapping Mesial temporal lobe epilepsy (MTLE) with hippocampus sclerosis (HS) is associated with functional and structural alterations extending beyond the temporal regions and abnormal pattern of brain resting state networks (RSNs) connectivity. We hypothesized that the interaction of large-scale RSNs is differently affected in patients with right- and left-MTLE with HS compared to controls. We aimed to determine and characterize these alterations through the analysis of 12 RSNs, functionally parceled in 70 regions of interest (ROIs), from resting-state functional-MRIs of 99 subjects (52 controls, 26 right- and 21 left-MTLE patients with HS). Image preprocessing and statistical analysis were performed using UF(2) C-toolbox, which provided ROI-wise results for intranetwork and internetwork connectivity. Intranetwork abnormalities were observed in the dorsal default mode network (DMN) in both groups of patients and in the posterior salience network in right-MTLE. Both groups showed abnormal correlation between the dorsal-DMN and the posterior salience, as well as between the dorsal-DMN and the executive-control network. Patients with left-MTLE also showed reduced correlation between the dorsal-DMN and visuospatial network and increased correlation between bilateral thalamus and the posterior salience network. The ipsilateral hippocampus stood out as a central area of abnormalities. Alterations on left-MTLE expressed a low cluster coefficient, whereas the altered connections on right-MTLE showed low cluster coefficient in the DMN but high in the posterior salience regions. Both right- and left-MTLE patients with HS have widespread abnormal interactions of large-scale brain networks; however, all parameters evaluated indicate that left-MTLE has a more intricate bihemispheric dysfunction compared to right-MTLE. Hum Brain Mapp 37:3137-3152, 2016. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc. 10.1002/hbm.23231