Neuromodulation of cancer pain.
Prinsloo Sarah,Gabel Stephanie,Lyle Randall,Cohen Lorenzo
Integrative cancer therapies
Managing cancer-related chronic pain is challenging to health care professionals as well as cancer patients and survivors. The management of cancer-related pain has largely consisted of pharmacological treatments, which has caused researchers to focus on neurotransmitter activity as a mediator of patients' perception of pain rather than the electrical activity during neurobiological processes of cancer-related pain. Consequently, brain-based pain treatment has focused mainly on neurotransmitters and not electrical neuromodulation. Neuroimaging research has revealed that brain activity is associated with patients' perceptions of symptoms across various diagnoses. The brain modulates internally generated neural activity and adjusts perceptions according to sensory input from the peripheral nervous system. Cancer-related pain may result not only from changes in the peripheral nervous system but also from changes in cortical activity over time. Thus, cortical reorganization by way of the brain's natural, plastic ability (neuroplasticity) may be used to manage pain symptoms. Physical and psychological distress could be modulated by giving patients tools to regulate neural activity in symptom-specific regions of interest. Initial research in nononcology populations suggests that encouraging neuroplasticity through a learning paradigm can be a useful technique to help treat chronic pain. Here we review evidence that indicates a measurable link between brain activity and patient-reported psychological and physical distress. We also summarize findings regarding both the neuroelectrical and neuroanatomical experience of symptoms, review research examining the mechanisms of the brain's ability to modify its own activity, and propose a brain-computer interface as a learning paradigm to augment neuroplasticity for pain management.
10.1177/1534735413477193
Cancer Pain Management-New Therapies.
Current oncology reports
PURPOSE OF REVIEW:Despite the rapid advance in anti-cancer treatment in recent years, the treatment to cancer-related pain remains largely unchanged. One systemic review has shown that approximately 32% of patient with cancer-related pain were undertreated. While in patients responding to strong opioids, long-term use of opioids will lead to many undesired side effects such as constipation, tolerance, and addiction. The goals of this review are to re visit the current algorism of cancer pain management and bring attention to the emerging interventional pain management techniques. RECENT FINDINGS:Peripheral nerve stimulation (PNS) has been successfully used to treat certain types of chronic non-cancer pain with long-term analgesic effect. PNS has also brought some promising results in treating localized cancer-related pain in a pilot study. More studies are needed to advance the novel and safe treatment of cancer-related pain. Incorporating interventional techniques such as PNS properly can optimize the current treatment strategy and improve outcomes.
10.1007/s11912-021-01166-z
Neuromodulation for chronic pain.
Knotkova Helena,Hamani Clement,Sivanesan Eellan,Le Beuffe María Francisca Elgueta,Moon Jee Youn,Cohen Steven P,Huntoon Marc A
Lancet (London, England)
Neuromodulation is an expanding area of pain medicine that incorporates an array of non-invasive, minimally invasive, and surgical electrical therapies. In this Series paper, we focus on spinal cord stimulation (SCS) therapies discussed within the framework of other invasive, minimally invasive, and non-invasive neuromodulation therapies. These therapies include deep brain and motor cortex stimulation, peripheral nerve stimulation, and the non-invasive treatments of repetitive transcranial magnetic stimulation, transcranial direct current stimulation, and transcutaneous electrical nerve stimulation. SCS methods with electrical variables that differ from traditional SCS have been approved. Although methods devoid of paraesthesias (eg, high frequency) should theoretically allow for placebo-controlled trials, few have been done. There is low-to-moderate quality evidence that SCS is superior to reoperation or conventional medical management for failed back surgery syndrome, and conflicting evidence as to the superiority of traditional SCS over sham stimulation or between different SCS modalities. Peripheral nerve stimulation technologies have also undergone rapid development and become less invasive, including many that are placed percutaneously. There is low-to-moderate quality evidence that peripheral nerve stimulation is effective for neuropathic pain in an extremity, low quality evidence that it is effective for back pain with or without leg pain, and conflicting evidence that it can prevent migraines. In the USA and many areas in Europe, deep brain and motor cortex stimulation are not approved for chronic pain, but are used off-label for refractory cases. Overall, there is mixed evidence supporting brain stimulation, with most sham-controlled trials yielding negative findings. Regarding non-invasive modalities, there is moderate quality evidence that repetitive transcranial magnetic stimulation does not provide meaningful benefit for chronic pain in general, but conflicting evidence regarding pain relief for neuropathic pain and headaches. For transcranial direct current stimulation, there is low-quality evidence supporting its benefit for chronic pain, but conflicting evidence regarding a small treatment effect for neuropathic pain and headaches. For transcutaneous electrical nerve stimulation, there is low-quality evidence that it is superior to sham or no treatment for neuropathic pain, but conflicting evidence for non-neuropathic pain. Future research should focus on better evaluating the short-term and long-term effectiveness of all neuromodulation modalities and whether they decrease health-care use, and on refining selection criteria and treatment variables.
10.1016/S0140-6736(21)00794-7
Neuromodulation for Pain Management.
Wang Jing,Chen Zhe
Advances in experimental medicine and biology
Pain is a salient and complex sensory experience with important affective and cognitive dimensions. The current definition of pain relies on subjective reports in both humans and experimental animals. Such definition lacks basic mechanistic insights and can lead to a high degree of variability. Research on biomarkers for pain has previously focused on genetic analysis. However, recent advances in human neuroimaging and research in animal models have begun to show the promise of a circuit-based neural signature for pain. At the treatment level, pharmacological therapy for pain remains limited. Neuromodulation has emerged as a specific form of treatment without the systemic side effects of pharmacotherapies. In this review, we will discuss some of the current neuromodulatory modalities for pain, research on newer targets, as well as emerging possibility for an integrated brain-computer interface approach for pain management.
10.1007/978-981-13-2050-7_8