Photothermal-Responsive Intelligent Hybrid of Hierarchical Carbon Nanocages Encapsulated by Metal-Organic Hydrogels for Sensitized Photothermal Therapy.
Advanced healthcare materials
Hierarchical carbon nanocages as emerging nanomaterials have a great potential for photothermal therapy due to their unique porous structure, high specific surface area, and excellent photothermal property. Herein, a hierarchical nitrogen-doped carbon nanocage (hNCNC) is introduced as a second near-infrared photothermal agent, and then functionalizes it with metal-organic hydrogel (MOG) to form a thermal-responsive switch for sensitized photothermal therapy. Upon 1064 nm light irradiation, the hNCNCs exhibit a remarkable photothermal conversion efficiency of 65.9% owing to a high near-infrared extinction coefficient. Meanwhile, due to the hierarchical structure, hNCNCs show 60.2% (wt./wt.) loading efficiency of quercetin, a heat shock protein (Hsp70) inhibitor. Through thermal-driven dry-gel transformation, the coating MOGs intelligently release the encapsulated quercetin for sensitizing cancer cells to heat. Based on the synergistic effect of hyperthermia elevation and thermal-driven drug release, the dual thermal utilization platform achieves effective photothermal tumor ablation in vivo under low concentration of hNCNCs and mild irradiation, which provides a new diagram of intelligent responsive photothermal agents for enhanced photothermal therapy.
10.1002/adhm.202300834
A wearable electrostimulation-augmented ionic-gel photothermal patch doped with MXene for skin tumor treatment.
Nature communications
A wearable biological patch capable of producing multiple responses to light and electricity without interfering with daily activities is highly desired for skin cancer treatment, but remains a key challenge. Herein, the skin-mountable electrostimulation-augmented photothermal patch (eT-patch) comprising transparent ionic gel with MXene (TiCT doping is developed and applied for the treatment of melanoma under photostimulation at 0.5 W/cm. The eT-patch designed has superior photothermal and electrical characteristics owing to ionic gels doped with MXene which provides high photothermal conversion efficiency and electrical conductivity as a medium. Simultaneously, the ionic gel-based eT-patch having excellent optical transparency actualizes real-time observation of skin response and melanoma treatment process under photothermal and electrical stimulation (PES) co-therapy. Systematical cellular study on anti-tumor mechanism of the eT-patch under PES treatment revealed that eT-patch under PES treatment can synergically trigger cancer cell apoptosis and pyroptosis, which together lead to the death of melanoma cells. Due to the obvious advantages of relatively safe and less side effects in healthy organs, the developed eT-patch provides a promising cost-effective therapeutic strategy for skin tumors and will open a new avenue for biomedical applications of ionic gels.
10.1038/s41467-024-45070-z
Chaotropic Effect-Induced Sol-Gel Transition and Radical Stabilization for Bacterially Sensitive Near-Infrared Photothermal Therapy.
Nano letters
Deep-seated bacterial infections (DBIs) are stubborn and deeply penetrate tissues. Eliminating deep-seated bacteria and promoting tissue regeneration remain great challenges. Here, a novel radical-containing hydrogel (SFT-B Gel) cross-linked by a chaotropic effect was designed for the sensing of DBIs and near-infrared photothermal therapy (NIR-II PTT). A silk fibroin solution stained with 4,4',4″-(1,3,5-triazine-2,4,6-triyl)tris(1-methylpyridin-1-ium) (TPT) was employed as the backbone, which could be cross-linked by a -dodecaborate cluster (BH) through a chaotropic effect to form the SFT-B Gel. More interestingly, the SFT-B Gel exhibited the ability to sense DBIs, which could generate a TPT radical with obvious color changes in the presence of bacteria. The radical-containing SFT-B Gel (SFT-B★ Gel) possessed strong NIR-II absorption and a remarkable photothermal effect, thus demonstrating excellent NIR-II PTT antibacterial activity for the treatment of DBIs. This work provides a new approach for the construction of intelligent hydrogels with unique properties using a chaotropic effect.
10.1021/acs.nanolett.4c00860
Thermal-Responsive Gel-Based Overheat Limiter Enabled Intelligent Photothermal Therapy.
Small (Weinheim an der Bergstrasse, Germany)
Uncontrolled and excessive photothermal heating in photothermal therapy (PTT) inevitably causes thermal damage to surrounding normal tissues, severely limiting the universality and safety of PTT. To address this issue, an intelligent cooling thermal-responsive (ICTR) gel containing poly(N-isopropylacrylamide-co-acrylamide) (P(NIPAM-AM))microgel is applied onto the skin to realize intelligent PTT, which can avoid excessive heating and accidental injury. The high near-infrared (NIR) light transmittance (> 95%) of the ICTR gel ensures effective light delivery at low temperatures, while the refractive index of the P(NIPAM-AM) microgel increases remarkably when the temperature exceeds a predetermined threshold, resulting in progressively enhanced light scattering and weakened photothermal conversion. In animal studies, the negative feedback regulation of ICTR gel on light transmittance and photothermal heating allows the photothermal temperature in the lesion site to be stabilized within the effective therapeutic range (45 °C) while ensuring that the skin surface temperature does not exceed 35 °C. Compared with the severe skin thermal damage found in the histological staining of mice skin receiving conventional PTT, the mice skin receiving the ICTR gel-enabled intelligent PTT remains in good condition. This study establishes an intelligent and universal paradigm for PTT thermal regulation, which is of great significance for achieving safe and effective PTT.
10.1002/smll.202312140