Diagnostic and prognostic value of triglyceride glucose index: a comprehensive evaluation of meta-analysis.
Cardiovascular diabetology
OBJECTIVE:The present umbrella review aims to collate and summarize the findings from previous meta-analyses on the Triglyceride and Glucose (TyG) Index, providing insights to clinicians, researchers, and policymakers regarding the usefulness of this biomarker in various clinical settings. METHODS:A comprehensive search was conducted in PubMed, Scopus, and Web of Science up to April 14, 2024, without language restrictions. The AMSTAR2 checklist assessed the methodological quality of the included meta-analyses. Statistical analyses were performed using Comprehensive Meta-Analysis (CMA) software. RESULTS:A total of 32 studies were finally included. The results revealed significant associations between the TyG index and various health outcomes. For kidney outcomes, a high TyG index was significantly associated with an increased risk of contrast-induced nephropathy (CIN) (OR = 2.24, 95% CI: 1.82-2.77) and chronic kidney disease (CKD) (RR = 1.46, 95% CI: 1.32-1.63). High TyG index was significantly associated with an increased risk of type 2 diabetes mellitus (T2DM) (RR = 3.53, 95% CI: 2.74-4.54), gestational diabetes mellitus (GDM) (OR = 2.41, 95% CI: 1.48-3.91), and diabetic retinopathy (DR) (OR = 2.34, 95% CI: 1.31-4.19). Regarding metabolic diseases, the TyG index was significantly higher in patients with obstructive sleep apnea (OSA) (SMD = 0.86, 95% CI: 0.57-1.15), metabolic syndrome (MD = 0.83, 95% CI: 0.74-0.93), and non-alcoholic fatty liver disease (NAFLD) (OR = 2.36, 95% CI: 1.88-2.97) compared to those without these conditions. In cerebrovascular diseases, a higher TyG index was significantly associated with an increased risk of dementia (OR = 1.14, 95% CI: 1.12-1.16), cognitive impairment (OR = 2.31, 95% CI: 1.38-3.86), and ischemic stroke (OR = 1.37, 95% CI: 1.22-1.54). For cardiovascular outcomes, the TyG index showed significant associations with an increased risk of heart failure (HF) (HR = 1.21, 95% CI: 1.12-1.30), atrial fibrillation (AF) (SMD = 1.22, 95% CI: 0.57-1.87), and hypertension (HTN) (RR = 1.52, 95% CI: 1.25-1.85). CONCLUSION:The TyG index is a promising biomarker for screening and predicting various medical conditions, particularly those related to insulin resistance and metabolic disorders. However, the heterogeneity and methodological quality of the included studies suggest the need for further high-quality research to confirm these findings and refine the clinical utility of the TyG index.
10.1186/s12933-024-02392-y
Impact of resistance training on blood pressure and other cardiovascular risk factors: a meta-analysis of randomized, controlled trials.
Cornelissen Véronique A,Fagard Robert H,Coeckelberghs Ellen,Vanhees Luc
Hypertension (Dallas, Tex. : 1979)
We reviewed the effect of resistance training on blood pressure and other cardiovascular risk factors in adults. Randomized, controlled trials lasting ≥4 weeks investigating the effects of resistance training on blood pressure in healthy adults (age ≥18 years) and published in a peer-reviewed journal up to June 2010 were included. Random- and fixed-effects models were used for analyses, with data reported as weighted means and 95% confidence limits. We included 28 randomized, controlled trials, involving 33 study groups and 1012 participants. Overall, resistance training induced a significant blood pressure reduction in 28 normotensive or prehypertensive study groups [-3.9 (-6.4; -1.2)/-3.9 (-5.6; -2.2) mm Hg], whereas the reduction [-4.1 (-0.63; +1.4)/-1.5 (-3.4; +0.40) mm Hg] was not significant for the 5 hypertensive study groups. When study groups were divided according to the mode of training, isometric handgrip training in 3 groups resulted in a larger decrease in blood pressure [-13.5 (-16.5; -10.5)/-6.1(-8.3; -3.9) mm Hg] than dynamic resistance training in 30 groups [-2.8 (-4.3; -1.3)/-2.7 (-3.8; -1.7) mm Hg]. After dynamic resistance training, Vo(2) peak increased by 10.6% (P=0.01), whereas body fat and plasma triglycerides decreased by 0.6% (P<0.01) and 0.11 mmol/L (P<0.05), respectively. No significant effect could be observed on other blood lipids and fasting blood glucose. This meta-analysis supports the blood pressure-lowering potential of dynamic resistance training and isometric handgrip training. In addition, dynamic resistance training also favorably affects some other cardiovascular risk factors. Our results further suggest that isometric handgrip training may be more effective for reducing blood pressure than dynamic resistance training. However, given the small amount of isometric studies available, additional studies are warranted to confirm this finding.
10.1161/HYPERTENSIONAHA.111.177071
Discrepancies between general and central obesity in arterial stiffness: observational studies and Mendelian randomization study.
BMC medicine
BACKGROUND:Obesity has been linked to arterial stiffness, while no consensus was reached on the association. We aimed to clarify the association of general and central obesity with arterial stiffness by combining observational studies and Mendelian randomization (MR) study. METHODS:Two cross-sectional studies were performed in UK Biobank and Fuqing Cohort, respectively. Two-sample MR study was conducted using summary data of GWASs from GIANT consortium and UK Biobank. General obesity and central obesity were measured using body mass index (BMI) and waist circumference (WC), respectively. Arterial stiffness was measured by arterial stiffness index (ASI) in UK Biobank or branchial-ankle pulse wave velocity (baPWV) in Fuqing Cohort. RESULTS:Two observational studies found a consistent positive association of BMI and WC with arterial stiffness when adjusting for age, sex, education, smoking, alcohol drinking, physical activity, and LDL cholesterol. However, when additionally adjusting for metabolic traits (i.e., systolic blood pressure, diastolic blood pressure, blood glucose, triglycerides, high-density lipoprotein cholesterol, and WC or BMI), the association with BMI changed to be inverse. As compared to the lowest quintile group, the adjusted ORs across groups of second to fifth quintile were 0.93, 0.90, 0.83, and 0.72 in UK Biobank and 0.88, 0.65, 0.63, and 0.50 in Fuqing Cohort. In contrast, the positive relationship with WC remained stable with the adjusted ORs of 1.23, 1.46, 1.60, and 1.56 in UK Biobank and 1.35, 1.44, 1.77, and 1.64 in Fuqing Cohort. MR analyses provided supportive evidence of the negative association with BMI (OR = 0.97, 95%CI = 0.94-1.00) and the positive association with WC (OR = 1.14, 95%CI = 1.08-1.20). CONCLUSIONS:Observational and genetic analyses provide concordant results that central obesity is independently related to arterial stiffness, while the role of general obesity depends on metabolic status.
10.1186/s12916-024-03546-1
Triglyceride-glucose index as a marker in cardiovascular diseases: landscape and limitations.
Cardiovascular diabetology
The triglyceride-glucose (TyG) index has been identified as a reliable alternative biomarker of insulin resistance (IR). Recently, a considerable number of studies have provided robust statistical evidence suggesting that the TyG index is associated with the development and prognosis of cardiovascular disease (CVD). Nevertheless, the application of the TyG index as a marker of CVD has not systemically been evaluated, and even less information exists regarding the underlying mechanisms associated with CVD. To this end, in this review, we summarize the history of the use of the TyG index as a surrogate marker for IR. We aimed to highlight the application value of the TyG index for a variety of CVD types and to explore the potential limitations of using this index as a predictor for cardiovascular events to improve its application value for CVD and provide more extensive and precise supporting evidence.
10.1186/s12933-022-01511-x