logo logo
Effect of transcription-factor concentrations on leukemic stem cells. Rosenbauer Frank,Koschmieder Steffen,Steidl Ulrich,Tenen Daniel G Blood Increasing evidence suggests that leukemias are sustained by leukemic stem cells. However, the molecular pathways underlying the transformation of normal cells into leukemic stem cells are still poorly understood. The involvement of a small group of key transcription factors into this process was suggested by their frequent mutation or down-regulation in patients with acute myeloid leukemia (AML). Recent findings in mice with hypomorphic transcription-factor genes demonstrated that leukemic stem-cell formation in AML could directly be caused by reduced transcription-factor activity beyond a critical threshold. Most interestingly, those experimental models and the paucity of biallelic null mutations or deletions in transcription-factor genes in patients suggest that AML is generally associated with graded down-regulation rather than complete disruption of transcription factors. Here, we discuss the effects of transcription-factor concentrations on hematopoiesis and leukemia, with a focus on the regulation of transcription-factor gene expression as a major mechanism that alters critical threshold levels during blood development and cancer. 10.1182/blood-2005-02-0717
Targeting the multidrug resistance-1 transporter in AML: molecular regulation and therapeutic strategies. Mahadevan Daruka,List Alan F Blood The multidrug resistance-1 (MDR1) gene product, P-glycoprotein (P-gp), and the multidrug resistance-related proteins (MRPs) are members of the adenosine triphosphate (ATP)-binding cassette (ABC) transporter gene superfamily that regulates the trafficking of drugs, peptides, ions, and xenobiotics across cell membrane barriers. Three-dimensional modeling of human MDR1/P-gp indicates that these glycoproteins function as efficient, ATP-dependent gate-keepers, which scan the plasma membrane and its inner leaflet to flip lipophilic substrates to the outer membrane leaflet. Delineation of the adverse prognostic power of MDR1 in adult acute myeloid leukemia (AML) raised hopes that pharmacologic blockade of P-gp would improve the outcome of conventional cytotoxic therapy, perhaps more so than in any other human malignancy. Phase 3 clinical trials investigating first- and second-generation P-gp antagonists have yielded conflicting results, emphasizing the importance of applying preclinical principals to realistically appraise expectations for clinical benefit. Structure-based design strategies and the delineation of transcriptional regulators of survival gene cassettes promise to yield novel, more-effective strategies to overcome drug resistance. Lessons learned from investigations of these and other mechanisms of cellular defense hold promise for a renaissance in the development of targeted therapeutics in acute leukemia. 10.1182/blood-2003-07-2490
Advances in the Treatment of Acute Myeloid Leukemia: New Drugs and New Challenges. Short Nicholas J,Konopleva Marina,Kadia Tapan M,Borthakur Gautam,Ravandi Farhad,DiNardo Courtney D,Daver Naval Cancer discovery The therapeutic armamentarium of acute myeloid leukemia (AML) has rapidly expanded in the past few years, driven largely by translational research into its genomic landscape and an improved understanding of mechanisms of resistance to conventional therapies. However, primary and secondary drug resistance remains a substantial problem for most patients. Research into the mechanisms of resistance to these new agents is informing the development of the next class of AML drugs and the design of combination regimens aimed at optimally exploiting therapeutic vulnerabilities, with the ultimate goal of eradicating all subclones of the disease and increasing cure rates in AML. SIGNIFICANCE: AML is a heterogeneous disease, characterized by a broad spectrum of molecular alterations that influence clinical outcomes and also provide potential targets for drug development. This review discusses the current and emerging therapeutic landscape of AML, highlighting novel classes of drugs and how our expanding knowledge of mechanisms of resistance are informing future therapies and providing new opportunities for effective combination strategies. 10.1158/2159-8290.CD-19-1011
Expression and regulation of C/EBPα in normal myelopoiesis and in malignant transformation. Avellino Roberto,Delwel Ruud Blood One of the most studied transcription factors in hematopoiesis is the leucine zipper CCAAT-enhancer binding protein α (C/EBPα), which is mainly involved in cell fate decisions for myeloid differentiation. Its involvement in acute myeloid leukemia (AML) is diverse, with patients frequently exhibiting mutations, deregulation of gene expression, or alterations in the function of C/EBPα. In this review, we emphasize the importance of C/EBPα for neutrophil maturation, its role in myeloid priming of hematopoietic stem and progenitor cells, and its indispensable requirement for AML development. We discuss that mutations in the open reading frame of lead to an altered C/EBPα function, affecting the expression of downstream genes and consequently deregulating myelopoiesis. The emerging transcriptional mechanisms of are discussed based on recent studies. Novel insights on how these mechanisms may be deregulated by oncoproteins or mutations/variants in enhancers are suggested in principal to reveal novel mechanisms of how is deregulated at the transcriptional level. 10.1182/blood-2016-09-687822
FLT3 as a therapeutic target in AML: still challenging after all these years. Kindler Thomas,Lipka Daniel B,Fischer Thomas Blood Mutations within the FMS-like tyrosine kinase 3 (FLT3) gene on chromosome 13q12 have been detected in up to 35% of acute myeloid leukemia (AML) patients and represent one of the most frequently identified genetic alterations in AML. Over the last years, FLT3 has emerged as a promising molecular target in therapy of AML. Here, we review results of clinical trials and of correlative laboratory studies using small molecule FLT3 tyrosine kinase inhibitors (TKIs) in AML patients. We also review mechanisms of primary and secondary drug resistance to FLT3-TKI, and from the data currently available we summarize lessons learned from FLT3-TKI monotherapy. Finally, for using FLT3 as a molecular target, we discuss novel strategies to overcome treatment failure and to improve FLT3 inhibitor therapy. 10.1182/blood-2010-04-261867
Epigenetics and approaches to targeted epigenetic therapy in acute myeloid leukemia. Wouters Bas J,Delwel Ruud Blood Acute myeloid leukemia (AML) is the most common type of acute leukemia in adults. AML is a heterogeneous malignancy characterized by distinct genetic abnormalities. Recent discoveries have highlighted an additional important role of dysregulated epigenetic mechanisms in the pathogenesis of the disease. In contrast to genetic changes, epigenetic modifications are frequently reversible, which provides opportunities for targeted treatment using specific inhibitors. In this review, we will provide an overview of the current state of epigenetics and epigenetic therapy in AML and will describe perspectives on how to identify promising new approaches for epigenetic targeted treatment. 10.1182/blood-2015-07-604512
Emerging therapeutic drugs for AML. Stein Eytan M,Tallman Martin S Blood Multiple new drugs are being developed to treat acute myeloid leukemia (AML), including novel formulations of traditional chemotherapy-antibody drug conjugates and agents that target specific mutant enzymes. Next-generation sequencing has allowed us to discover the genetic mutations that lead to the development and clinical progression of AML. Studies of clonal hierarchy suggest which mutations occur early and dominate. This has led to targeted therapy against mutant driver proteins as well as the development of drugs such as CPX-351 and SGN-CD33A whose mechanisms of action and efficacy may not be dependent on mutational complexity. In this brief review, we discuss drugs that may emerge as important for the treatment of AML in the next 10 years. 10.1182/blood-2015-07-604538
The role of the MDM2/p53 axis in antitumor immune responses. Blood ABSTRACT:Mouse double minute 2 homolog (MDM2) is a negative regulator of the tumor suppressor p53 and is often highly expressed in acute myeloid leukemia (AML) and other solid tumors. Inactivating mutations in TP53, the gene encoding p53, confers an unfavorable prognosis in AML and increases the risk for relapse after allogeneic hematopoietic cell transplantation. We review the concept that manipulation of MDM2 and p53 could enhance immunogenicity of AML and solid tumor cells. Additionally, we discuss the mechanisms by which MDM2 and p53 regulate the expression of major histocompatibility complex class I and II, transcription of double stranded RNA of endogenous retroviruses, responses of interferons, production of interleukin-15, and expression of tumor necrosis factor-related apoptosis-inducing ligand receptor 1 and 2 on malignant cells. The direct effects of MDM2 inhibition or MDM2 deletion in effector T cells are discussed in the context of cancer immunotherapy. The preclinical findings are connected to clinical studies using MDM2 inhibition to enhance antitumor immunity in patients. This review summarizes current evidence supporting the use of MDM2 inhibition to restore p53 as well as the direct effects of MDM2 inhibition on T cells as an emerging concept for combined antitumor immunotherapy against hematological malignancies and beyond. 10.1182/blood.2023020731
Emerging therapies for inv(16) AML. Blood The core binding factor composed of CBFβ and RUNX subunits plays a critical role in most hematopoietic lineages and is deregulated in acute myeloid leukemia (AML). The fusion oncogene CBFβ-SMMHC expressed in AML with the chromosome inversion inv(16)(p13q22) acts as a driver oncogene in hematopoietic stem cells and induces AML. This review focuses on novel insights regarding the molecular mechanisms involved in CBFβ-SMMHC-driven leukemogenesis and recent advances in therapeutic approaches to target CBFβ-SMMHC in inv(16) AML. 10.1182/blood.2020009933
Escape from T-cell-targeting immunotherapies in acute myeloid leukemia. Blood ABSTRACT:Single-cell and spatial multimodal technologies have propelled discoveries of the solid tumor microenvironment (TME) molecular features and their correlation with clinical response and resistance to immunotherapy. Computational tools are incessantly being developed to characterize tumor-infiltrating immune cells and to model tumor immune escape. These advances have led to substantial research into T-cell hypofunctional states in the TME and their reinvigoration with T-cell-targeting approaches, including checkpoint inhibitors (CPIs). Until recently, we lacked a high-dimensional picture of the acute myeloid leukemia (AML) TME, including compositional and functional differences in immune cells between disease onset and postchemotherapy or posttransplantation relapse, and the dynamic interplay between immune cells and AML blasts at various maturation stages. AML subgroups with heightened interferon gamma (IFN-γ) signaling were shown to derive clinical benefit from CD123×CD3-bispecific dual-affinity retargeting molecules and CPIs, while being less likely to respond to standard-of-care cytotoxic chemotherapy. In this review, we first highlight recent progress into deciphering immune effector states in AML (including T-cell exhaustion and senescence), oncogenic signaling mechanisms that could reduce the susceptibility of AML cells to T-cell-mediated killing, and the dichotomous roles of type I and II IFN in antitumor immunity. In the second part, we discuss how this knowledge could be translated into opportunities to manipulate the AML TME with the aim to overcome resistance to CPIs and other T-cell immunotherapies, building on recent success stories in the solid tumor field, and we provide an outlook for the future. 10.1182/blood.2023019961