logo logo
The low density lipoprotein receptor modulates the effects of hypogonadism on diet-induced obesity and related metabolic perturbations. Constantinou Caterina,Mpatsoulis Diogenis,Natsos Anastasios,Petropoulou Peristera-Ioanna,Zvintzou Evangelia,Traish Abdulmaged M,Voshol Peter J,Karagiannides Iordanes,Kypreos Kyriakos E Journal of lipid research Here, we investigated how LDL receptor deficiency (Ldlr(-/-)) modulates the effects of testosterone on obesity and related metabolic dysfunctions. Though sham-operated Ldlr(-/-) mice fed Western-type diet for 12 weeks became obese and showed disturbed plasma glucose metabolism and plasma cholesterol and TG profiles, castrated mice were resistant to diet-induced obesity and had improved glucose metabolism and reduced plasma TG levels, despite a further deterioration in their plasma cholesterol profile. The effect of hypogonadism on diet-induced weight gain of Ldlr(-/-) mice was independent of ApoE and Lrp1. Indirect calorimetry analysis indicated that hypogonadism in Ldlr(-/-) mice was associated with increased metabolic rate. Indeed, mitochondrial cytochrome c and uncoupling protein 1 expression were elevated, primarily in white adipose tissue, confirming increased mitochondrial metabolic activity due to thermogenesis. Testosterone replacement in castrated Ldlr(-/-) mice for a period of 8 weeks promoted diet-induced obesity, indicating a direct role of testosterone in the observed phenotype. Treatment of sham-operated Ldlr(-/-) mice with the aromatase inhibitor exemestane for 8 weeks showed that the obesity of castrated Ldlr(-/-) mice is independent of estrogens. Overall, our data reveal a novel role of Ldlr as functional modulator of metabolic alterations associated with hypogonadism. 10.1194/jlr.M050047
Postprandial triglyceride-rich lipoproteins promote the adipogenic differentiation of adipose-derived mesenchymal stem cells via the LRP1/caveolin-1/AKT1 pathway. Biochimica et biophysica acta. Molecular and cell biology of lipids Diet-induced obesity (OB) is usually accompanied by hypertriglyceridemia, which is characterized by the accumulation of triglyceride (TG)-rich lipoprotein (TRL) particles in the circulation. We previously found that postprandial TRL combined with insulin induced the adipogenic differentiation of 3T3-L1 preadipocytes, which may represent a key mechanism underlying obesity. However, the specific mechanism and signaling pathway involved in this process remain to be fully elucidated. In this study, we found that, in the postprandial state, patients with obesity had significantly higher levels of TG and remnant cholesterol (RC) than normal-weight controls. In vitro, we found that postprandial TRL, together with insulin, promoted the adipogenic differentiation of adipose-derived mesenchymal stem cells (AMSCs), as evidenced by the increased expression of lipogenesis-related genes and their protein products, including low-density lipoprotein related protein 1 (LRP1). Besides, caveolin-1 (Cav-1) expression was also significantly upregulated under this condition. Cav-1 and LRP1 were observed to interact, and then led to the activation of the PI3K/AKT1 signaling pathway. Meanwhile, the inhibition of LRP1 or Cav-1 significantly attenuated the adipogenic differentiation of AMSCs and downregulated AKT1 phosphorylation levels. Moreover, treatment with a selective AKT1 inhibitor significantly suppressed postprandial TRL and insulin-induced adipogenesis in AMSCs. Combined, our results demonstrated that, in association with insulin, postprandial TRL can promote the adipogenic differentiation of AMSCs in a manner that is dependent on the LRP1/Cav-1-mediated activation of the PI3K/AKT1 signaling pathway. Our findings indicated that a postprandial increase in TRL content is a critical factor in the pathogenesis of hypertriglyceridemia and diet-induced obesity. 10.1016/j.bbalip.2022.159236
Interactions of the NPXY microdomains of the low density lipoprotein receptor-related protein 1. Proteomics The low density lipoprotein receptor-related protein 1 (LRP1) mediates internalization of a large number of proteins and protein-lipid complexes and is widely implicated in Alzheimer's disease. The cytoplasmic domain of LRP1 (LRP1-CT) can be phosphorylated by activated protein-tyrosine kinases at two NPXY motifs in LRP1-CT; Tyr 4507 is readily phosphorylated and must be phosphorylated before phosphorylation of Tyr 4473 occurs. Pull-down experiments from brain lysate revealed numerous proteins binding to LRP1-CT, but the results were highly variable. To separate which proteins bind to each NPXY motif and their phosphorylation dependence, each NPXY motif microdomain was prepared in both phosphorylated and non-phosphorylated forms and used to probe rodent brain extracts for binding proteins. Proteins that bound specifically to the microdomains were identified by LC-MS/MS, and confirmed by Western blot. Recombinant proteins were then tested for binding to each NPXY motif. The NPXY(4507) (membrane distal) was found to interact with a large number of proteins, many of which only bound the tyrosine-phosphorylated form. This microdomain also bound a significant number of other proteins in the unphosphorylated state. Many of the interactions were later confirmed to be direct with recombinant proteins. The NPXY(4473) (membrane proximal) bound many fewer proteins and only to the phosphorylated form. 10.1002/pmic.200900457
Glucose Starvation or Pyruvate Dehydrogenase Activation Induce a Broad, ERK5-Mediated, Metabolic Remodeling Leading to Fatty Acid Oxidation. Cells Cells have metabolic flexibility that allows them to adapt to changes in substrate availability. Two highly relevant metabolites are glucose and fatty acids (FA), and hence, glycolysis and fatty acid oxidation (FAO) are key metabolic pathways leading to energy production. Both pathways affect each other, and in the absence of one substrate, metabolic flexibility allows cells to maintain sufficient energy production. Here, we show that glucose starvation or sustained pyruvate dehydrogenase (PDH) activation by dichloroacetate (DCA) induce large genetic remodeling to propel FAO. The extracellular signal-regulated kinase 5 (ERK5) is a key effector of this multistep metabolic remodeling. First, there is an increase in the lipid transport by expression of low-density lipoprotein receptor-related proteins (LRP), e.g., CD36, LRP1 and others. Second, an increase in the expression of members of the acyl-CoA synthetase long-chain (ACSL) family activates FA. Finally, the expression of the enzymes that catalyze the initial step in each cycle of FAO, i.e., the acyl-CoA dehydrogenases (ACADs), is induced. All of these pathways lead to enhanced cellular FAO. In summary, we show here that different families of enzymes, which are essential to perform FAO, are regulated by the signaling pathway, i.e., MEK5/ERK5, which transduces changes from the environment to genetic adaptations. 10.3390/cells11091392
Low-density lipoprotein (LDL)-dependent uptake of Gram-positive lipoteichoic acid and Gram-negative lipopolysaccharide occurs through LDL receptor. Grin Peter M,Dwivedi Dhruva J,Chathely Kevin M,Trigatti Bernardo L,Prat Annik,Seidah Nabil G,Liaw Patricia C,Fox-Robichaud Alison E Scientific reports Lipoteichoic acid (LTA) and lipopolysaccharide (LPS) are bacterial lipids that stimulate pro-inflammatory cytokine production, thereby exacerbating sepsis pathophysiology. Proprotein convertase subtilisin/kexin type 9 (PCSK9) negatively regulates uptake of cholesterol by downregulating hepatic lipoprotein receptors, including low-density lipoprotein (LDL) receptor (LDLR) and possibly LDLR-related protein-1 (LRP1). PCSK9 also negatively regulates Gram-negative LPS uptake by hepatocytes, however this mechanism is not completely characterized and mechanisms of Gram-positive LTA uptake are unknown. Therefore, our objective was to elucidate the mechanisms through which PCSK9 regulates uptake of LTA and LPS by investigating the roles of lipoproteins and lipoprotein receptors. Here we show that plasma PCSK9 concentrations increase transiently over time in septic and non-septic critically ill patients, with highly similar profiles over 14 days. Using flow cytometry, we demonstrate that PCSK9 negatively regulates LDLR-mediated uptake of LTA and LPS by HepG2 hepatocytes through an LDL-dependent mechanism, whereas LRP1 and high-density lipoprotein do not contribute to this uptake pathway. Bacterial lipid uptake by hepatocytes was not associated with cytokine production or hepatocellular injury. In conclusion, our study characterizes an LDL-dependent and LDLR-mediated bacterial lipid uptake pathway regulated by PCSK9, and provides evidence in support of PCSK9 inhibition as a potential therapeutic strategy for sepsis. 10.1038/s41598-018-28777-0
Apolipoprotein A5 regulates intracellular triglyceride metabolism in adipocytes. Zheng Xiao-Yan,Yu Bi-Lian,Xie Yu-Fei,Zhao Shui-Ping,Wu Chen-Lu Molecular medicine reports It has previously been demonstrated that apolipoprotein A5 (apoA5) can be internalized by human adipocytes and significantly decreases intracellular triglyceride content. In the present study, endocytosis of apoA5 by adipocytes under different conditions, and the underlying mechanism by which apoA5 regulates cellular triglyceride storage, was investigated. The results revealed that the apoA5 protein was detected in human subcutaneous abdominal adipose tissues. In addition, the uptake of apoA5 was attenuated in human obese adipose tissues and in cultured adipocytes with hypertrophy or insulin resistance. Low‑density lipoprotein receptor protein 1 (LRP1) knockdown in adipocytes resulted in a decrease in internalized apoA5 content, suggesting that LRP1 serves a role in apoA5 uptake. Treatment of adipocytes with apoA5 decreased the expression of the lipid droplet‑associated proteins such as cidec and perilipin. ApoA5‑treated adipocytes demonstrated an increase in lipolysis activity and expression of uncoupling protein 1, which is the molecular effector of thermogenesis in brown adipocytes. These results suggested that decreased triglyceride accumulation in adipocytes induced by apoA5 may be associated with enhanced lipolysis and energy expenditure, which may result from reduced expression of cidec and perilipin. In conclusion, the present study demonstrated a novel role of apoA5 in regulating the intracellular triglyceride metabolism of adipocytes. The results of the present study suggested that apoA5 may serve as a potential therapeutic target for the treatment of obesity and its related disorders. 10.3892/mmr.2017.7461
Whole Blood RNA as a Source of Transcript-Based Nutrition- and Metabolic Health-Related Biomarkers. Petrov Petar D,Bonet M Luisa,Reynés Bárbara,Oliver Paula,Palou Andreu,Ribot Joan PloS one Blood cells are receiving an increasing attention as an easily accessible source of transcript-based biomarkers. We studied the feasibility of using mouse whole blood RNA in this context. Several paradigms were studied: (i) metabolism-related transcripts known to be affected in rat tissues and peripheral blood mononuclear cells (PBMC) by fasting and upon the development of high fat diet (HFD)-induced overweight were assessed in whole blood RNA of fasted rats and mice and of HFD-fed mice; (ii) retinoic acid (RA)-responsive genes in tissues were assessed in whole blood RNA of control and RA-treated mice; (iii) lipid metabolism-related transcripts previously identified in PBMC as potential biomarkers of metabolic health in a rat model were assessed in whole blood in an independent model, namely retinoblastoma haploinsufficient (Rb+/-) mice. Blood was collected and stored in RNAlater® at -80°C until analysis of selected transcripts by real-time RT-PCR. Comparable changes with fasting were detected in the expression of lipid metabolism-related genes when RNA from either PBMC or whole blood of rats or mice was used. HFD-induced excess body weight and fat mass associated with expected changes in the expression of metabolism-related genes in whole blood of mice. Changes in gene expression in whole blood of RA-treated mice reproduced known transcriptional actions of RA in hepatocytes and adipocytes. Reduced expression of Fasn, Lrp1, Rxrb and Sorl1 could be validated as early biomarkers of metabolic health in young Rb+/- mice using whole blood RNA. Altogether, these results support the use of whole blood RNA in studies aimed at identifying blood transcript-based biomarkers of nutritional/metabolic status or metabolic health. Results also support reduced expression of Fasn, Lrp1, Rxrb and Sorl1 in blood cells at young age as potential biomarkers of metabolic robustness. 10.1371/journal.pone.0155361
Low-density lipoprotein receptor-related protein 1 deficiency in cardiomyocytes reduces susceptibility to insulin resistance and obesity. Benitez-Amaro Aleyda,Revuelta-López Elena,Bornachea Olga,Cedó Lídia,Vea Àngela,Herrero Laura,Roglans Nuria,Soler-Botija Carolina,de Gonzalo-Calvo David,Nasarre Laura,Camino-López Sandra,García Eduardo,Mato Eugenia,Blanco-Vaca Francisco,Bayes-Genis Antoni,Sebastian David,Laguna Joan Carles,Serra Dolors,Zorzano Antonio,Escola-Gil Joan Carles,Llorente-Cortes Vicenta Metabolism: clinical and experimental BACKGROUND:Low-density lipoprotein receptor-related protein 1 (LRP1) plays a key role in fatty acid metabolism and glucose homeostasis. In the context of dyslipemia, LRP1 is upregulated in the heart. Our aim was to evaluate the impact of cardiomyocyte LRP1 deficiency on high fat diet (HFD)-induced cardiac and metabolic alterations, and to explore the potential mechanisms involved. METHODS:We used TnT-iCre transgenic mice with thoroughly tested suitability to delete genes exclusively in cardiomyocytes to generate an experimental mouse model with conditional Lrp1 deficiency in cardiomyocytes (TNT-iCre-LRP1). FINDINGS:Mice with Lrp1-deficient cardiomyocytes (cm-Lrp1) have a normal cardiac function combined with a favorable metabolic phenotype against HFD-induced glucose intolerance and obesity. Glucose intolerance protection was linked to higher hepatic fatty acid oxidation (FAO), lower liver steatosis and increased whole-body energy expenditure. Proteomic studies of the heart revealed decreased levels of cardiac pro-atrial natriuretic peptide (pro-ANP), which was parallel to higher ANP circulating levels. cm-Lrp1 mice showed ANP signaling activation that was linked to increased fatty acid (FA) uptake and increased AMPK/ ACC phosphorylation in the liver. Natriuretic peptide receptor A (NPR-A) antagonist completely abolished ANP signaling and metabolic protection in cm-Lrp1 mice. CONCLUSIONS:These results indicate that an ANP-dependent axis controlled by cardiac LRP1 levels modulates AMPK activity in the liver, energy homeostasis and whole-body metabolism. 10.1016/j.metabol.2020.154191
Adipose tissue gene expression of factors related to lipid processing in obesity. Clemente-Postigo Mercedes,Queipo-Ortuño Maria Isabel,Fernandez-Garcia Diego,Gomez-Huelgas Ricardo,Tinahones Francisco J,Cardona Fernando PloS one BACKGROUND:Adipose tissue lipid storage and processing capacity can be a key factor for obesity-related metabolic disorders such as insulin resistance and diabetes. Lipid uptake is the first step to adipose tissue lipid storage. The aim of this study was to analyze the gene expression of factors involved in lipid uptake and processing in subcutaneous (SAT) and visceral (VAT) adipose tissue according to body mass index (BMI) and the degree of insulin resistance (IR). METHODS AND PRINCIPAL FINDINGS:VLDL receptor (VLDLR), lipoprotein lipase (LPL), acylation stimulating protein (ASP), LDL receptor-related protein 1 (LRP1) and fatty acid binding protein 4 (FABP4) gene expression was measured in VAT and SAT from 28 morbidly obese patients with Type 2 Diabetes Mellitus (T2DM) or high IR, 10 morbidly obese patients with low IR, 10 obese patients with low IR and 12 lean healthy controls. LPL, FABP4, LRP1 and ASP expression in VAT was higher in lean controls. In SAT, LPL and FABP4 expression were also higher in lean controls. BMI, plasma insulin levels and HOMA-IR correlated negatively with LPL expression in both VAT and SAT as well as with FABP4 expression in VAT. FABP4 gene expression in SAT correlated inversely with BMI and HOMA-IR. However, multiple regression analysis showed that BMI was the main variable contributing to LPL and FABP4 gene expression in both VAT and SAT. CONCLUSIONS:Morbidly obese patients have a lower gene expression of factors related with lipid uptake and processing in comparison with healthy lean persons. 10.1371/journal.pone.0024783
Low-density lipoprotein receptor-related protein 1 regulates muscle fiber development in cooperation with related genes to affect meat quality. Lv Chao,Niu Shuling,Yan Shouqing,Bai Chunyan,Yu Xi,Hou Jiani,Gao Wenjing,Zhang Jinyu,Zhao Zhihui,Yang Caini,Zhang Yonghong Poultry science Low-density lipoprotein receptor-related protein 1 (LRP1) is an important signal protein that is widely involved in physiological processes, such as lipid metabolism, cell movement, and disease processes. However, the relationship between LRP1 and meat quality remains unknown in chickens. The present study aimed to investigate the correlation between LRP1 and meat quality that builds on our preliminary research, as well as to reveal the underlying molecular mechanism of LRP1 on meat-quality traits. The results showed that LRP1 was significantly correlated with shear force (P < 0.05). Several key genes involved in muscle growth and development, including IGF-1, IGFBP-5, IGF-1R, IGF-2, and MyoD, were down-regulated significantly (P < 0.05 or P < 0.01), and MSTN was up-regulated significantly (P < 0.01) in the presence of LRP1 interference. Cell proliferation- or apoptosis-related genes, including PMP22, CDKN2C, and p53, increased significantly (P < 0.05 or P < 0.01), whereas Bcl-x decreased significantly (P < 0.05) in the RNAi group. We conclude that LRP1 regulates muscle fiber development in cooperation with related genes that affect myoblast proliferation and apoptosis, thereby impacting shear force in chickens. This study will provide a valuable resource for biological investigations of muscle growth and meat-quality-related genes in chickens. The results could be useful in identifying candidate genes that could be used for selective breeding to improve meat quality. 10.3382/ps/pez168
Characterization of lipid metabolism in insulin-sensitive adipocytes differentiated from immortalized human mesenchymal stem cells. Prawitt Janne,Niemeier Andreas,Kassem Moustapha,Beisiegel Ulrike,Heeren Joerg Experimental cell research There is a great demand for cell models to study human adipocyte function. Here we describe the adipogenic differentiation of a telomerase-immortalized human mesenchymal stem cell line (hMSC-Tert) that maintains numerous features of terminally differentiated adipocytes even after prolonged withdrawal of the peroxisome proliferator activated receptor gamma (PPARgamma) agonist rosiglitazone. Differentiated hMSC-Tert developed the characteristic monolocular phenotype of mature adipocytes. The expression of adipocyte specific markers was highly increased during differentiation. Most importantly, the presence of the PPARgamma agonist rosiglitazone was not required for the stable expression of lipoprotein lipase, adipocyte fatty acid binding protein and perilipin on mRNA and protein levels. Adiponectin expression was post-transcriptionally down-regulated in the absence of rosiglitazone. Insulin sensitivity as measured by insulin-induced phosphorylation of Akt and S6 ribosomal protein was also independent of rosiglitazone. In addition to commonly used adipogenic markers, we investigated further PPARgamma-stimulated proteins with a role in lipid metabolism. We observed an increase of lipoprotein receptor (VLDLR, LRP1) and apolipoprotein E expression during differentiation. Despite this increased expression, the receptor-mediated endocytosis of lipoproteins was decreased in differentiated adipocytes, suggesting that these proteins may have an additional function in adipose tissue beyond lipoprotein uptake. 10.1016/j.yexcr.2007.11.011
Adipocyte differentiation-related protein is induced by LRP1-mediated aggregated LDL internalization in human vascular smooth muscle cells and macrophages. Llorente-Cortés V,Royo T,Juan-Babot O,Badimon L Journal of lipid research Aggregated LDL (agLDL) is internalized by LDL receptor-related protein (LRP1) in vascular smooth muscle cells (VSMCs) and human monocyte-derived macrophages (HMDMs). AgLDL is, therefore, a potent inducer of massive intracellular cholesteryl ester accumulation in lipid droplets. The adipocyte differentiation-related protein (ADRP) has been found on the surface of lipid droplets. The objectives of this work were to analyze whether agLDL uptake modulates ADRP expression levels and whether the effect of agLDL internalization on ADRP expression depends on LRP1 in human VSMCs and HMDMs. AgLDL strongly upregulates ADRP mRNA (real-time PCR) and protein expression (Western blot) in human VSMCs (mRNA: by 3.06-fold; protein: 8.58-fold) and HMDMs (mRNA: by 3.5-fold; protein: by 3.71-fold). Treatment of VSMCs and HMDMs with small anti-LRP1-interfering RNA (siRNA-LRP1) leads to specific inhibition of LRP1 expression. siRNA-LRP1 treatment significantly reduced agLDL-induced ADRP overexpression in HMDMs (by 69%) and in VSMCs (by 53%). Immunohystochemical studies evidence a colocolocalization between ADRP/macrophages and ADRP/VSMCs in advanced lipid-enriched atherosclerotic plaques. These results demonstrate that agLDL-LRP1 engagement induces ADRP overexpression in both HMDMs and human VSMCs and that ADRP is highly expressed in advanced lipid-enriched human atherosclerotic plaques. Therefore, LRP1-mediated agLDL uptake might play a pivotal role in vascular foam cell formation. 10.1194/jlr.M700039-JLR200
Inactivation of the LRP1 intracellular NPxYxxL motif in LDLR-deficient mice enhances postprandial dyslipidemia and atherosclerosis. Gordts Philip L S M,Reekmans Sara,Lauwers Annick,Van Dongen Amber,Verbeek Leen,Roebroek Anton J M Arteriosclerosis, thrombosis, and vascular biology OBJECTIVE:The purpose of this study was to determine the significance of the intracellular NPxYxxL motif of LRP1 for the atheroprotective role of this multifunctional receptor. METHODS AND RESULTS:LRP1 knock-in mice carrying an inactivating mutation in the NPxYxxL motif were crossed with LDLR-deficient mice, a model for atherosclerosis. In this LDLR(-/-) background the mutated mice showed a more atherogenic lipoprotein profile, which was associated with a decreased clearance of postprandial lipids because of a compromised endocytosis rate and reduced lipase activity. On an atherogenic diet LRP1 mutant mice revealed a 50% increased development of atherosclerosis. This aggravation was accompanied by an increase in smooth muscle cell (SMC) and collagen content and apoptotic cells in the lesions. The mutation showed, however, a limited impact on basal PDGFR-beta expression and signaling and the antimigratory property of apoE on PDGF-BB-stimulated SMCs. Additionally, levels of LRP1 atherogenic ligands, like MMP2, t-PA, FVIII, and the inflammatory ligand TNF-alpha showed to be significantly elevated. CONCLUSIONS:These findings demonstrate that the NPxYxxL motif is essential for the atheroprotective role of LRP1. This motif is relevant for normal control of lipid metabolism and of atherogenic and inflammatory ligands, but has no pronounced effect on regulating PDGF-BB/PDGFR-beta signaling in SMCs. 10.1161/ATVBAHA.109.192211
DNA methylation microarrays identify epigenetically regulated lipid related genes in obese patients with hypercholesterolemia. Molecular medicine (Cambridge, Mass.) BACKGROUND:Epigenetics can contribute to lipid disorders in obesity. The DNA methylation pattern can be the cause or consequence of high blood lipids. The aim of the study was to investigate the DNA methylation profile in peripheral leukocytes associated with elevated LDL-cholesterol level in overweight and obese individuals. METHODS:To identify the differentially methylated genes, genome-wide DNA methylation microarray analysis was performed in leukocytes of obese individuals with high LDL-cholesterol (LDL-CH, ≥ 3.4 mmol/L) versus control obese individuals with LDL-CH, < 3.4 mmol/L. Biochemical tests such as serum glucose, total cholesterol, HDL cholesterol, triglycerides, insulin, leptin, adiponectin, FGF19, FGF21, GIP and total plasma fatty acids content have been determined. Oral glucose and lipid tolerance tests were also performed. Human DNA Methylation Microarray (from Agilent Technologies) containing 27,627 probes for CpG islands was used for screening of DNA methylation status in 10 selected samples. Unpaired t-test and Mann-Whitney U-test were used for biochemical and anthropometric parameters statistics. For microarrays analysis, fold of change was calculated comparing hypercholesterolemic vs control group. The q-value threshold was calculated using moderated Student's t-test followed by Benjamini-Hochberg multiple test correction FDR. RESULTS:In this preliminary study we identified 190 lipid related CpG loci differentially methylated in hypercholesterolemic versus control individuals. Analysis of DNA methylation profiles revealed several loci engaged in plasma lipoprotein formation and metabolism, cholesterol efflux and reverse transport, triglycerides degradation and fatty acids transport and β-oxidation. Hypermethylation of CpG loci located in promoters of genes regulating cholesterol metabolism: PCSK9, LRP1, ABCG1, ANGPTL4, SREBF1 and NR1H2 in hypercholesterolemic patients has been found. Novel epigenetically regulated CpG sites include ABCG4, ANGPTL4, AP2A2, AP2M1, AP2S1, CLTC, FGF19, FGF1R, HDLBP, LIPA, LMF1, LRP5, LSR, NR1H2 and ZDHHC8 genes. CONCLUSIONS:Our results indicate that obese individuals with hypercholesterolemia present specific DNA methylation profile in genes related to lipids transport and metabolism. Detailed knowledge of epigenetic regulation of genes, important for lipid disorders in obesity, underlies the possibility to influence target genes by changing diet and lifestyle, as DNA methylation is reversible and depends on environmental factors. These findings give rise for further studies on factors that targets methylation of revealed genes. 10.1186/s10020-020-00220-z
Hepatic LDL receptor-related protein-1 deficiency alters mitochondrial dynamics through phosphatidylinositol 4,5-bisphosphate reduction. The Journal of biological chemistry The LDL receptor-related protein 1 (LRP1) is a multifunctional transmembrane protein with endocytosis and signal transduction functions. Previous studies have shown that hepatic LRP1 deficiency exacerbates diet-induced steatohepatitis and insulin resistance via mechanisms related to increased lysosome and mitochondria permeability and dysfunction. The current study examined the impact of LRP1 deficiency on mitochondrial function in the liver. Hepatocytes isolated from liver-specific LRP1 knockout (hLrp1) mice showed reduced oxygen consumption compared with control mouse hepatocytes. The mitochondria in hLrp1 mouse livers have an abnormal morphology and their membranes contain significantly less anionic phospholipids, including lower levels of phosphatidylethanolamine and cardiolipin that increase mitochondrial fission and impair fusion. Additional studies showed that LRP1 complexes with phosphatidylinositol 4-phosphate 5-kinase like protein-1 (PIP5KL1) and phosphatidylinositol 4-phosphate 5-kinase-1β (PIP5K1β). The absence of LRP1 reduces the levels of both PIP5KL1 and PIP5K1β in the plasma membrane and also lowers phosphatidylinositol(4,5) bisphosphate (PI(4,5)P) levels in hepatocytes. These data indicate that LRP1 recruits PIP5KL1 and PIP5K1β to the plasma membrane for PI(4,5)P biosynthesis. The lack of LRP1 reduces lipid kinase expression, leading to lower PI(4,5)P levels, thereby decreasing the availability of this lipid metabolite in the cardiolipin biosynthesis pathway to cause cardiolipin reduction and the impairment in mitochondria homeostasis. Taken together, the current study identifies another signaling mechanism by which LRP1 regulates cell functions: binding and recruitment of PIP5KL1 and PIP5K1β to the membrane for PI(4,5)P synthesis. In addition, it highlights the importance of this mechanism for maintaining the integrity and functions of intracellular organelles. 10.1016/j.jbc.2021.100370
Role of LRP1 and ERK and cAMP Signaling Pathways in Lactoferrin-Induced Lipolysis in Mature Rat Adipocytes. Ikoma-Seki Keiko,Nakamura Kanae,Morishita Satoru,Ono Tomoji,Sugiyama Keikichi,Nishino Hoyoku,Hirano Hisashi,Murakoshi Michiaki PloS one Lactoferrin (LF) is a multifunctional glycoprotein present in milk. A clinical study showed that enteric-coated bovine LF tablets decrease visceral fat accumulation. Furthermore, animal studies revealed that ingested LF is partially delivered to mesenteric fat, and in vitro studies showed that LF promotes lipolysis in mature adipocytes. The aim of the present study was to determine the mechanism underlying the induction of lipolysis in mature adipocytes that is induced by LF. To address this question, we used proteomics techniques to analyze protein expression profiles. Mature adipocytes from primary cultures of rat mesenteric fat were collected at various times after exposure to LF. Proteomic analysis revealed that the expression levels of hormone-sensitive lipase (HSL), which catalyzes the rate-limiting step of lipolysis, were upregulated and that HSL was activated by protein kinase A within 15 min after the cells were treated with LF. We previously reported that LF increases the intracellular concentration of cyclic adenosine monophosphate (cAMP), suggesting that LF activates the cAMP signaling pathway. In this study, we show that the expression level and the activity of the components of the extracellular signal-regulated kinase (ERK) signaling pathway were upregulated. Moreover, LF increased the activity of the transcription factor cAMP response element binding protein (CREB), which acts downstream in the cAMP and ERK signaling pathways and regulates the expression levels of adenylyl cyclase and HSL. Moreover, silencing of the putative LF receptor low-density lipoprotein receptor-related protein 1 (LRP1) attenuated lipolysis in LF-treated adipocytes. These results suggest that LF promoted lipolysis in mature adipocytes by regulating the expression levels of proteins involved in lipolysis through controlling the activity of cAMP/ERK signaling pathways via LRP1. 10.1371/journal.pone.0141378
Signaling through LRP1: Protection from atherosclerosis and beyond. Boucher Philippe,Herz Joachim Biochemical pharmacology The low-density lipoprotein receptor-related protein (LRP1) is a multifunctional cell surface receptor that belongs to the LDL receptor (LDLR) gene family and that is widely expressed in several tissues. LRP1 consists of an 85-kDa membrane-bound carboxyl fragment (β chain) and a non-covalently attached 515-kDa (α chain) amino-terminal fragment. Through its extracellular domain, LRP1 binds at least 40 different ligands ranging from lipoprotein and protease inhibitor complex to growth factors and extracellular matrix proteins. LRP-1 has also been shown to interact with scaffolding and signaling proteins via its intracellular domain in a phosphorylation-dependent manner and to function as a co-receptor partnering with other cell surface or integral membrane proteins. LRP-1 is thus implicated in two major physiological processes: endocytosis and regulation of signaling pathways, which are both involved in diverse biological roles including lipid metabolism, cell growth/differentiation processes, degradation of proteases, and tissue invasion. The embryonic lethal phenotype obtained after target disruption of the LRP-1 gene in the mouse highlights the biological importance of this receptor and revealed a critical, but yet undefined role in development. Tissue-specific gene deletion studies also reveal an important contribution of LRP1 in vascular remodeling, foam cell biology, the central nervous system, and in the molecular mechanisms of atherosclerosis. 10.1016/j.bcp.2010.09.018
Mutation in the distal NPxY motif of LRP1 alleviates dietary cholesterol-induced dyslipidemia and tissue inflammation. Journal of lipid research The impairment of LDL receptor-related protein-1 (LRP1) in numerous cell types is associated with obesity, diabetes, and fatty liver disease. Here, we compared the metabolic phenotype of C57BL/6J wild-type and LRP1 knock-in mice carrying an inactivating mutation in the distal NPxY motif after feeding a low-fat diet or high-fat (HF) diet with cholesterol supplementation (HFHC) or HF diet without cholesterol supplementation. In response to HF feeding, both groups developed hyperglycemia, hyperinsulinemia, hyperlipidemia, increased adiposity, and adipose tissue inflammation and liver steatosis. However, LRP1 NPxY mutation prevents HFHC diet-induced hypercholesterolemia, reduces adipose tissue and brain inflammation, and limits liver progression to steatohepatitis. Nevertheless, this mutation does not protect against HFHC diet-induced insulin resistance. The selective metabolic improvement observed in HFHC diet-fed LRP1 NPxY mutant mice is due to an apparent increase of hepatic LDL receptor levels, leading to an elevated rate of plasma lipoprotein clearance and lower hepatic cholesterol levels. The unique metabolic phenotypes displayed by LRP1 NPxY mutant mice indicate an LRP1-cholesterol axis in modulating tissue inflammation. The LRP1 NPxY mutant mouse phenotype differs from phenotypes observed in mice with tissue-specific LRP1 inactivation, thus highlighting the importance of an integrative approach to evaluate how global LRP1 dysfunction contributes to metabolic disease development. 10.1194/jlr.RA120001141
Canonical Wnt pathway and the LDL receptor superfamily in neuronal cholesterol homeostasis and function. Cardiovascular research AIMS:There is little information on the regulation of cholesterol homeostasis in the brain. Whether cholesterol crosses the blood-brain barrier is under investigation, but the present understanding is that cholesterol metabolism in the brain is independent from that in peripheral tissues. Lipoprotein receptors from the LDL receptor family (LRPs) have key roles in lipid particle accumulation in cells involved in vascular and cardiac pathophysiology; however, their function on neural cells is unknown. METHODS AND RESULTS:The expression of LRP5 and the components and targets of its downstream signalling pathway, the canonical Wnt pathway, including β-catenin, LEF1, VEGF, OPN, MMP7, and ADAM10, is analysed in the brains of Wt and Lrp5-/- mice and in a neuroblastoma cell line. LRP5 expression is increased in a time- and dose-dependent manner after lipid loading in neuronal cells; however, it does not participate in cholesterol homeostasis as shown by intracellular lipid accumulation analyses. Neurons challenged with staurosporin and H2O2 display an anti-apoptotic protective role for LRP5. CONCLUSIONS:For the first time, it has been shown that neurons can accumulate intracellular lipids and lipid uptake is performed mainly by the LDLR, while CD36, LRP1, and LRP5 do not play a major role. In addition, it has been shown that LRP5 triggers the canonical Wnt pathway in neuronal cells to generate pro-survival signals. Finally, Lrp5-/- mice have maintained expression of LRP5 only in the brain supporting the biological plausible concept of the need of brain LRP5 to elicit pro-survival processes and embryonic viability. 10.1093/cvr/cvad159
Altered Adipose Tissue DNA Methylation Status in Metabolic Syndrome: Relationships Between Global DNA Methylation and Specific Methylation at Adipogenic, Lipid Metabolism and Inflammatory Candidate Genes and Metabolic Variables. Castellano-Castillo Daniel,Moreno-Indias Isabel,Sanchez-Alcoholado Lidia,Ramos-Molina Bruno,Alcaide-Torres Juan,Morcillo Sonsoles,Ocaña-Wilhelmi Luis,Tinahones Francisco,Queipo-Ortuño María Isabel,Cardona Fernando Journal of clinical medicine Metabolic syndrome (MetS) has been postulated to increase the risk for type 2 diabetes, cardiovascular disease and cancer. Adipose tissue (AT) plays an important role in metabolic homeostasis, and AT dysfunction has an active role in metabolic diseases. MetS is closely related to lifestyle and environmental factors. Epigenetics has emerged as an interesting landscape to evaluate the possible interconnection between AT and metabolic disease, since it can be modulated by environmental factors and metabolic status. The aim of this study was to determine whether MetS has an impact on the global DNA methylation pattern and the DNA methylation of several genes related to adipogenesis (PPARG, PPARA), lipid metabolism (RXRA, SREBF2, SREBF1, SCD, LPL, LXRb), and inflammation (LRP1 C3, LEP and TNF) in visceral adipose tissue. LPL and TNF DNA methylation values were significantly different in the control-case comparisons, with higher and lower methylation respectively in the MetS group. Negative correlations were found between global DNA methylation (measured by LINE-1 methylation levels) and the metabolic deterioration and glucose levels. There were associations among variables of MetS, BMI, and HOMA-IR with DNA methylation at several CpG positions for the studied genes. In particular, there was a strong positive association between serum triglyceride levels (TG) with PPARA and LPL methylation levels. TNF methylation was negatively associated with the metabolic worsening and could be an important factor in preventing MetS occurrence according to logistic regression analysis. Therefore, global DNA methylation and methylation at specific genes related to adipogenesis, lipid metabolism and inflammation are related to the etiology of MetS and might explain in part some of the features associated to metabolic disorders. 10.3390/jcm8010087
Naturally Occurring Variants in LRP1 (Low-Density Lipoprotein Receptor-Related Protein 1) Affect HDL (High-Density Lipoprotein) Metabolism Through ABCA1 (ATP-Binding Cassette A1) and SR-B1 (Scavenger Receptor Class B Type 1) in Humans. Oldoni Federico,van Capelleveen Julian C,Dalila Nawar,Wolters Justina C,Heeren Joerg,Sinke Richard J,Hui David Y,Dallinga-Thie Geesje M,Frikke-Schmidt Ruth,Hovingh Kees G,van de Sluis Bart,Tybjærg-Hansen Anne,Kuivenhoven Jan Albert Arteriosclerosis, thrombosis, and vascular biology OBJECTIVE:Studies into the role of LRP1 (low-density lipoprotein receptor-related protein 1) in human lipid metabolism are scarce. Although it is known that a common variant in (rs116133520) is significantly associated with HDL-C (high-density lipoprotein cholesterol), the mechanism underlying this observation is unclear. In this study, we set out to study the functional effects of 2 rare variants identified in subjects with extremely low HDL-C levels. APPROACH AND RESULTS:In 2 subjects with HDL-C below the first percentile for age and sex and moderately elevated triglycerides, we identified 2 rare variants in : p.Val3244Ile and p.Glu3983Asp. Both variants decrease LRP1 expression and stability. We show in a series of translational experiments that these variants culminate in reduced trafficking of ABCA1 (ATP-binding cassette A1) to the cell membrane. This is accompanied by an increase in cell surface expression of SR-B1 (scavenger receptor class B type 1). Combined these effects may contribute to low HDL-C levels in our study subjects. Supporting these findings, we provide epidemiological evidence that rs116133520 is associated with apo (apolipoprotein) A1 but not with apoB levels. CONCLUSIONS:This study provides the first evidence that rare variants in are associated with changes in human lipid metabolism. Specifically, this study shows that LRP1 may affect HDL metabolism by virtue of its effect on both ABCA1 and SR-B1. 10.1161/ATVBAHA.117.310309
LRP1 regulates food intake and energy balance in GABAergic neurons independently of leptin action. American journal of physiology. Endocrinology and metabolism Low-density lipoprotein receptor-related protein 1 (LRP1) is a member of LDL receptor family that plays a key role in systemic glucose and lipid homeostasis. LRP1 also regulates energy balance in the hypothalamus by mediating leptin's anorexigenic action, although the underlying neurocircuitry involved is still unclear. Because GABAergic neurons are a major mediator of hypothalamic leptin action, we studied the role of GABAergic LRP1 in energy balance and leptin action using mice lacking LRP1 in Vgat- or AgRP-expressing neurons (Vgat-Cre; LRP1 or AgRP-Cre; LRP1). Here, we show that LRP1 deficiency in GABAergic neurons results in severe obesity in male and female mice fed a normal-chow diet. This effect is most likely due to increased food intake and decreased energy expenditure and locomotor activity. Increased adiposity in GABAergic neuron-specific LRP1-deficient mice is accompanied by hyperleptinemia and hyperinsulinemia. Insulin resistance and glucose intolerance in these mice are occurred without change in body weight. Importantly, LRP1 in GABAergic neurons is not required for leptin action, as evidenced by normal leptin's anorexigenic action and leptin-induced hypothalamic Stat3 phosphorylation. In contrast, LRP1 deficiency in AgRP neurons has no effect on adiposity and caloric intake. In conclusion, our data identify GABAergic neurons as a key neurocircuitry that underpins LRP1-dependent regulation of systemic energy balance and body-weight homeostasis. We further find that the GABAergic LRP1 signaling pathway modulates food intake and energy expenditure independently of leptin signaling and AgRP neurons. 10.1152/ajpendo.00399.2020
Effect of statins on lipid metabolism-related microRNA expression in HepG2 cells. Cerda Alvaro,Bortolin Raul Hernandes,Manriquez Victor,Salazar Luis,Zambrano Tomas,Fajardo Cristina Moreno,Hirata Mario Hiroyuki,Hirata Rosario Dominguez Crespo Pharmacological reports : PR BACKGROUND:Statins are potent cholesterol-lowering drugs that prevent cardiovascular events. microRNAs (miRNAs) modulate the expression of genes involved in metabolic pathways and cardiovascular functions post-transcriptionally. This study explored the effects of statins on the expression of miRNAs and their target genes involved in lipid metabolism in HepG2 cells. METHODS:HepG2 cells were treated with atorvastatin or simvastatin (0.1-10 µM) for 24 h. The expression of 84 miRNAs and nine target genes, selected by in silico studies, was measured by qPCR Array and TaqMan-qPCR, respectively. RESULTS:Five miRNAs were upregulated (miR-129, miR-143, miR-205, miR-381 and miR-495) and two downregulated (miR-29b and miR-33a) in atorvastatin-treated HepG2 cells. Simvastatin also downregulated miR-33a expression. Both statins upregulated LDLR, HMGCR, LRP1, and ABCG1, and downregulated FDFT1 and ABCB1, whereas only atorvastatin increased SCAP mRNA levels. In silico analysis of miRNA-mRNA interactions revealed a single network with six miRNAs modulating genes involved in lipogenesis and lipid metabolism. The statin-dysregulated miRNAs were predicted to target genes involved in cellular development and differentiation, regulation of metabolic process and expression of genes involved in inflammation, and lipid metabolism disorders contributing to metabolic and liver diseases. CONCLUSIONS:Atorvastatin-mediated miR-129, miR-143, miR-205, miR-381, and miR-495 upregulation, and miR-29b, and miR-33a downregulation, modulate the expression of target genes involved in lipogenesis and lipid metabolism. Thus, statins may prevent hepatic lipid accumulation and ameliorate dyslipidemia. 10.1007/s43440-021-00241-3
The Role of Low-Density Lipoprotein Receptor-Related Protein 1 in Lipid Metabolism, Glucose Homeostasis and Inflammation. Actis Dato Virginia,Chiabrando Gustavo Alberto International journal of molecular sciences Metabolic syndrome (MetS) is a highly prevalent disorder which can be used to identify individuals with a higher risk for cardiovascular disease and type 2 diabetes. This metabolic syndrome is characterized by a combination of physiological, metabolic, and molecular alterations such as insulin resistance, dyslipidemia, and central obesity. The low-density lipoprotein receptor-related protein 1 (LRP1—A member of the LDL receptor family) is an endocytic and signaling receptor that is expressed in several tissues. It is involved in the clearance of chylomicron remnants from circulation, and has been demonstrated to play a key role in the lipid metabolism at the hepatic level. Recent studies have shown that LRP1 is involved in insulin receptor (IR) trafficking and intracellular signaling activity, which have an impact on the regulation of glucose homeostasis in adipocytes, muscle cells, and brain. In addition, LRP1 has the potential to inhibit or sustain inflammation in macrophages, depending on its cellular expression, as well as the presence of particular types of ligands in the extracellular microenvironment. In this review, we summarize existing perspectives and the latest innovations concerning the role of tissue-specific LRP1 in lipoprotein and glucose metabolism, and examine its ability to mediate inflammatory processes related to MetS and atherosclerosis. 10.3390/ijms19061780
Deletion of Macrophage Low-Density Lipoprotein Receptor-Related Protein 1 (LRP1) Accelerates Atherosclerosis Regression and Increases C-C Chemokine Receptor Type 7 (CCR7) Expression in Plaque Macrophages. Circulation BACKGROUND:We previously showed that mice lacking MΦLRP1 (low-density lipoprotein receptor-related protein 1 in macrophages) undergo accelerated atherosclerotic plaque formation due to changes in macrophages including increased apoptosis, decreased efferocytosis, and exaggerated transition to the inflammatory M1 phenotype. Here we sought to explore the role of macrophage low-density lipoprotein receptor-related protein 1 during regression of atherosclerosis since regressing plaques are characterized by transitioning of macrophages to M2 status as inflammation resolves. METHODS:Apolipoprotein E mice on a high-fat diet for 12 weeks were reconstituted with bone marrow from apolipoprotein E-producing wild-type or MΦLRP1 mice, and then placed on a chow diet for 10 weeks (n=9 to 11 mice/group). A cohort of apolipoprotein E mice reconstituted with apolipoprotein E bone marrow served as baseline controls (n=9). RESULTS:Plaques of both wild-type and MΦLRP1 bone marrow recipients regressed compared with controls (11% and 22%, respectively; P<0.05), and plaques of MΦLRP1 recipients were 13% smaller than those of wild-type recipients ( P<0.05). Recipients of MΦLRP1 marrow had 36% fewer M1 macrophages ( P<0.01) and 2.5-fold more CCR7 (C-C chemokine receptor type 7)-positive macrophages in the plaque relative to wild-type mice ( P<0.01). Additionally, in vivo studies of cellular egress showed a 4.6-fold increase in 5-ethynyl-2´-deoxyuridine-labeled CCR7 macrophages in mediastinal lymph nodes. Finally, in vivo studies of reverse cholesterol transport showed a 1.4-fold higher reverse cholesterol transport in MΦLRP1 recipient mice ( P<0.01). CONCLUSIONS:Absence of macrophage low-density lipoprotein receptor-related protein 1 unexpectedly accelerates atherosclerosis regression, enhances reverse cholesterol transport, and increases expression of the motility receptor CCR7, which drives macrophage egress from lesions. 10.1161/CIRCULATIONAHA.117.031702
Increased expression of LDL receptor-related protein 1 during human cytomegalovirus infection reduces virion cholesterol and infectivity. Gudleski-O'Regan Nicole,Greco Todd M,Cristea Ileana M,Shenk Thomas Cell host & microbe In response to virus infection, cells can alter protein expression to modify cellular functions and limit viral replication. To examine host protein expression during infection with human cytomegalovirus (HCMV), an enveloped DNA virus, we performed a semiquantitative, temporal analysis of the cell surface proteome in infected fibroblasts. We determined that resident low density lipoprotein related receptor 1 (LRP1), a plasma membrane receptor that regulates lipid metabolism, is elevated early after HCMV infection, resulting in decreased intracellular cholesterol. siRNA knockdown or antibody-mediated inhibition of LRP1 increased intracellular cholesterol and concomitantly increased the infectious virus yield. Virions produced under these conditions contained elevated cholesterol, resulting in increased infectivity. Depleting cholesterol from virions reduced their infectivity by blocking fusion of the virion envelope with the cell membrane. Thus, LRP1 restricts HCMV infectivity by controlling the availability of cholesterol for the virion envelope, and increased LRP1 expression is likely a defense response to infection. 10.1016/j.chom.2012.05.012
Deficiency of the hepatokine selenoprotein P increases responsiveness to exercise in mice through upregulation of reactive oxygen species and AMP-activated protein kinase in muscle. Misu Hirofumi,Takayama Hiroaki,Saito Yoshiro,Mita Yuichiro,Kikuchi Akihiro,Ishii Kiyo-Aki,Chikamoto Keita,Kanamori Takehiro,Tajima Natsumi,Lan Fei,Takeshita Yumie,Honda Masao,Tanaka Mutsumi,Kato Seiji,Matsuyama Naoto,Yoshioka Yuya,Iwayama Kaito,Tokuyama Kumpei,Akazawa Nobuhiko,Maeda Seiji,Takekoshi Kazuhiro,Matsugo Seiichi,Noguchi Noriko,Kaneko Shuichi,Takamura Toshinari Nature medicine Exercise has numerous health-promoting effects in humans; however, individual responsiveness to exercise with regard to endurance or metabolic health differs markedly. This 'exercise resistance' is considered to be congenital, with no evident acquired causative factors. Here we show that the anti-oxidative hepatokine selenoprotein P (SeP) causes exercise resistance through its muscle receptor low-density lipoprotein receptor-related protein 1 (LRP1). SeP-deficient mice showed a 'super-endurance' phenotype after exercise training, as well as enhanced reactive oxygen species (ROS) production, AMP-activated protein kinase (AMPK) phosphorylation and peroxisome proliferative activated receptor γ coactivator (Ppargc)-1α (also known as PGC-1α; encoded by Ppargc1a) expression in skeletal muscle. Supplementation with the anti-oxidant N-acetylcysteine (NAC) reduced ROS production and the endurance capacity in SeP-deficient mice. SeP treatment impaired hydrogen-peroxide-induced adaptations through LRP1 in cultured myotubes and suppressed exercise-induced AMPK phosphorylation and Ppargc1a gene expression in mouse skeletal muscle-effects which were blunted in mice with a muscle-specific LRP1 deficiency. Furthermore, we found that increased amounts of circulating SeP predicted the ineffectiveness of training on endurance capacity in humans. Our study suggests that inhibitors of the SeP-LRP1 axis may function as exercise-enhancing drugs to treat diseases associated with a sedentary lifestyle. 10.1038/nm.4295
Amyloid precursor protein regulates brain apolipoprotein E and cholesterol metabolism through lipoprotein receptor LRP1. Liu Qiang,Zerbinatti Celina V,Zhang Juan,Hoe Hyang-Sook,Wang Baiping,Cole Sarah L,Herz Joachim,Muglia Louis,Bu Guojun Neuron Mutations in the amyloid precursor protein (APP) cause early-onset Alzheimer's disease (AD), but the only genetic risk factor for late-onset AD is the varepsilon4 allele of apolipoprotein E (apoE), a major cholesterol carrier. Using Cre-lox conditional knockout mice, we demonstrate that lipoprotein receptor LRP1 expression regulates apoE and cholesterol levels within the CNS. We also found that deletion of APP and its homolog APLP2, or components of the gamma-secretase complex, significantly enhanced the expression and function of LRP1, which was reversed by forced expression of the APP intracellular domain (AICD). We further show that AICD, together with Fe65 and Tip60, interacts with the LRP1 promoter and suppresses its transcription. Together, our findings support that the gamma-secretase cleavage of APP plays a central role in regulating apoE and cholesterol metabolism in the CNS via LRP1 and establish a biological linkage between APP and apoE, the two major genetic determinants of AD. 10.1016/j.neuron.2007.08.008
Adipocyte LDL receptor-related protein-1 expression modulates postprandial lipid transport and glucose homeostasis in mice. Hofmann Susanna M,Zhou Li,Perez-Tilve Diego,Greer Todd,Grant Erin,Wancata Lauren,Thomas Andrew,Pfluger Paul T,Basford Joshua E,Gilham Dean,Herz Joachim,Tschöp Matthias H,Hui David Y The Journal of clinical investigation Diet-induced obesity and its serious consequences such as diabetes, cardiovascular disease, and cancer are rapidly becoming a major global health threat. Therefore, understanding the cellular and molecular mechanisms by which dietary fat causes obesity and diabetes is of paramount importance in order to identify preventive and therapeutic strategies. Increased dietary fat intake results in high plasma levels of triglyceride-rich lipoproteins (TGRL). Tissue uptake of TGRL has been shown to promote glucose intolerance. We generated mice with an adipocyte-specific inactivation of the multifunctional receptor LDL receptor-related protein-1 (LRP1) to determine its role in mediating the effects of TGRL on diet-induced obesity and diabetes. Knockout mice displayed delayed postprandial lipid clearance, reduced body weight, smaller fat stores, lipid-depleted brown adipocytes, improved glucose tolerance, and elevated energy expenditure due to enhanced muscle thermogenesis. We further demonstrated that inactivation of adipocyte LRP1 resulted in resistance to dietary fat-induced obesity and glucose intolerance. These findings identify LRP1 as a critical regulator of adipocyte energy homeostasis, where functional disruption leads to reduced lipid transport, increased insulin sensitivity, and muscular energy expenditure. 10.1172/JCI31929
Overproduced interleukin 6 decreases blood lipid levels via upregulation of very-low-density lipoprotein receptor. Hashizume Misato,Yoshida Hiroto,Koike Nobuo,Suzuki Miho,Mihara Masahiko Annals of the rheumatic diseases BACKGROUND:Interleukin 6 (IL6) blockade raises blood lipid levels in patients with rheumatoid arthritis. OBJECTIVE:To examine the influence of IL6 on lipid metabolism. METHODS:Vascular smooth muscle cells (VSMC) were cultured in the presence of IL6, soluble IL6 receptor (sIL6R), IL6+sIL6R or tumour necrosis factor alpha (TNFalpha) for 24 h. After culture, the expression of very-low-density lipoprotein receptor (VLDLR), low-density lipoprotein receptor (LDLR) and low-density lipoprotein-related protein-1 (LRP-1) were measured by real-time PCR. Human IL6 was injected into mice twice a day for 2 weeks and then VLDLR expression in several tissues and the change of total cholesterol (TC) and triglyceride (TG) levels were investigated. Finally, the effect of anti-IL6 receptor (IL6R) antibody injection on blood lipid levels was examined. RESULTS:IL6+sIL6R significantly induced expression of VLDLR mRNA in VSMC (8.6-fold, p<0.05), but IL6 or sIL6R alone and TNFalpha did not do so. None of these cytokines induced LDLR and LRP-1 mRNA expression. IL6 injection into mice increased the expression of VLDLR in heart, adipose tissue and liver and decreased TC and TG levels. The injection of anti-IL6R antibody normalised the reduced levels of TC and TG caused by IL6 injection, whereas it had no influence on the levels of TC and TG in normal mice. CONCLUSIONS:Overproduced IL6 decreased blood lipid levels by increasing VLDLR expression in several tissues. It is concluded that IL6 blockade normalises reduced lipid levels caused by IL6, but does not affect normal lipid metabolism. 10.1136/ard.2008.104844
Tissue-type plasminogen activator regulates macrophage activation and innate immunity. Blood Tissue-type plasminogen activator (tPA) is the major intravascular activator of fibrinolysis and a ligand for receptors involved in cell signaling. In cultured macrophages, tPA inhibits the response to lipopolysaccharide (LPS) by a pathway that apparently requires low-density lipoprotein receptor-related protein-1 (LRP1). Herein, we show that the mechanism by which tPA neutralizes LPS involves rapid reversal of IκBα phosphorylation. tPA independently induced transient IκBα phosphorylation and extracellular signal-regulated kinase 1/2 (ERK1/2) activation in macrophages; however, these events did not trigger inflammatory mediator expression. The tPA signaling response was distinguished from the signature of signaling events elicited by proinflammatory LRP1 ligands, such as receptor-associated protein (RAP), which included sustained IκBα phosphorylation and activation of all 3 MAP kinases (ERK1/2, c-Jun kinase, and p38 MAP kinase). Enzymatically active and inactive tPA demonstrated similar immune modulatory activity. Intravascular administration of enzymatically inactive tPA in mice blocked the toxicity of LPS. In mice not treated with exogenous tPA, the plasma concentration of endogenous tPA increased 3-fold in response to LPS, to 116 ± 15 pM, but remained below the approximate threshold for eliciting anti-inflammatory cell signaling in macrophages (∼2.0 nM). This threshold is readily achieved in patients when tPA is administered therapeutically for stroke. In addition to LRP1, we demonstrate that the -methyl-D-aspartic acid receptor (NMDA-R) is expressed by macrophages and essential for anti-inflammatory cell signaling and regulation of cytokine expression by tPA. The NMDA-R and Toll-like receptor-4 were not required for proinflammatory RAP signaling. By mediating the tPA response in macrophages, the NMDA-R provides a pathway by which the fibrinolysis system may regulate innate immunity. 10.1182/blood-2017-04-780205
LDL receptor-related protein 1: unique tissue-specific functions revealed by selective gene knockout studies. Lillis Anna P,Van Duyn Lauren B,Murphy-Ullrich Joanne E,Strickland Dudley K Physiological reviews The LDL receptor-related protein (originally called LRP, but now referred to as LRP1) is a large endocytic receptor that is widely expressed in several tissues. LRP1 is a member of the LDL receptor family that plays diverse roles in various biological processes including lipoprotein metabolism, degradation of proteases, activation of lysosomal enzymes, and cellular entry of bacterial toxins and viruses. Deletion of the LRP1 gene leads to lethality in mice, revealing a critical, but as of yet, undefined role in development. Tissue-specific gene deletion studies reveal an important contribution of LRP1 in the vasculature, central nervous system, macrophages, and adipocytes. Three important properties of LRP1 dictate its diverse role in physiology: 1) its ability to recognize more than 30 distinct ligands, 2) its ability to bind a large number of cytoplasmic adaptor proteins via determinants located on its cytoplasmic domain in a phosphorylation-specific manner, and 3) its ability to associate with and modulate the activity of other transmembrane receptors such as integrins and receptor tyrosine kinases. 10.1152/physrev.00033.2007
Intracellular lipid metabolism impairs β cell compensation during diet-induced obesity. Ye Risheng,Gordillo Ruth,Shao Mengle,Onodera Toshiharu,Chen Zhe,Chen Shiuhwei,Lin Xiaoli,SoRelle Jeffrey A,Li Xiaohong,Tang Miao,Keller Mark P,Kuliawat Regina,Attie Alan D,Gupta Rana K,Holland William L,Beutler Bruce,Herz Joachim,Scherer Philipp E The Journal of clinical investigation The compensatory proliferation of insulin-producing β cells is critical to maintaining glucose homeostasis at the early stage of type 2 diabetes. Failure of β cells to proliferate results in hyperglycemia and insulin dependence in patients. To understand the effect of the interplay between β cell compensation and lipid metabolism upon obesity and peripheral insulin resistance, we eliminated LDL receptor-related protein 1 (LRP1), a pleiotropic mediator of cholesterol, insulin, energy metabolism, and other cellular processes, in β cells. Upon high-fat diet exposure, LRP1 ablation significantly impaired insulin secretion and proliferation of β cells. The diminished insulin signaling was partly contributed to by the hypersensitivity to glucose-induced, Ca2+-dependent activation of Erk and the mTORC1 effector p85 S6K1. Surprisingly, in LRP1-deficient islets, lipotoxic sphingolipids were mitigated by improved lipid metabolism, mediated at least in part by the master transcriptional regulator PPARγ2. Acute overexpression of PPARγ2 in β cells impaired insulin signaling and insulin secretion. Elimination of Apbb2, a functional regulator of LRP1 cytoplasmic domain, also impaired β cell function in a similar fashion. In summary, our results uncover the double-edged effects of intracellular lipid metabolism on β cell function and viability in obesity and type 2 diabetes and highlight LRP1 as an essential regulator of these processes. 10.1172/JCI97702
ApoC-III inhibits clearance of triglyceride-rich lipoproteins through LDL family receptors. Gordts Philip L S M,Nock Ryan,Son Ni-Huiping,Ramms Bastian,Lew Irene,Gonzales Jon C,Thacker Bryan E,Basu Debapriya,Lee Richard G,Mullick Adam E,Graham Mark J,Goldberg Ira J,Crooke Rosanne M,Witztum Joseph L,Esko Jeffrey D The Journal of clinical investigation Hypertriglyceridemia is an independent risk factor for cardiovascular disease, and plasma triglycerides (TGs) correlate strongly with plasma apolipoprotein C-III (ApoC-III) levels. Antisense oligonucleotides (ASOs) for ApoC-III reduce plasma TGs in primates and mice, but the underlying mechanism of action remains controversial. We determined that a murine-specific ApoC-III-targeting ASO reduces fasting TG levels through a mechanism that is dependent on low-density lipoprotein receptors (LDLRs) and LDLR-related protein 1 (LRP1). ApoC-III ASO treatment lowered plasma TGs in mice lacking lipoprotein lipase (LPL), hepatic heparan sulfate proteoglycan (HSPG) receptors, LDLR, or LRP1 and in animals with combined deletion of the genes encoding HSPG receptors and LDLRs or LRP1. However, the ApoC-III ASO did not lower TG levels in mice lacking both LDLR and LRP1. LDLR and LRP1 were also required for ApoC-III ASO-induced reduction of plasma TGs in mice fed a high-fat diet, in postprandial clearance studies, and when ApoC-III-rich or ApoC-III-depleted lipoproteins were injected into mice. ASO reduction of ApoC-III had no effect on VLDL secretion, heparin-induced TG reduction, or uptake of lipids into heart and skeletal muscle. Our data indicate that ApoC-III inhibits turnover of TG-rich lipoproteins primarily through a hepatic clearance mechanism mediated by the LDLR/LRP1 axis. 10.1172/JCI86610
Regulation of glucose transporter translocation in health and diabetes. Bogan Jonathan S Annual review of biochemistry To enhance glucose uptake into muscle and fat cells, insulin stimulates the translocation of GLUT4 glucose transporters from intracellular membranes to the cell surface. This response requires the intersection of insulin signaling and vesicle trafficking pathways, and it is compromised in the setting of overnutrition to cause insulin resistance. Insulin signals through AS160/Tbc1D4 and Tbc1D1 to modulate Rab GTPases and through the Rho GTPase TC10α to act on other targets. In unstimulated cells, GLUT4 is incorporated into specialized storage vesicles containing IRAP, LRP1, sortilin, and VAMP2, which are sequestered by TUG, Ubc9, and other proteins. Insulin mobilizes these vesicles directly to the plasma membrane, and it modulates the trafficking itinerary so that cargo recycles from endosomes during ongoing insulin exposure. Knowledge of how signaling and trafficking pathways are coordinated will be essential to understanding the pathogenesis of diabetes and the metabolic syndrome and may also inform a wide range of other physiologies. 10.1146/annurev-biochem-060109-094246
Apolipoprotein F is reduced in humans with steatosis and controls plasma triglyceride-rich lipoprotein metabolism. Hepatology (Baltimore, Md.) BACKGROUND:NAFLD affects nearly 25% of the global population. Cardiovascular disease (CVD) is the most common cause of death among patients with NAFLD, in line with highly prevalent dyslipidemia in this population. Increased plasma triglyceride (TG)-rich lipoprotein (TRL) concentrations, an important risk factor for CVD, are closely linked with hepatic TG content. Therefore, it is of great interest to identify regulatory mechanisms of hepatic TRL production and remnant uptake in the setting of hepatic steatosis. APPROACH AND RESULTS:To identify liver-regulated pathways linking intrahepatic and plasma TG metabolism, we performed transcriptomic analysis of liver biopsies from two independent cohorts of obese patients. Hepatic encoding apolipoprotein F ( APOF ) expression showed the fourth-strongest negatively correlation with hepatic steatosis and the strongest negative correlation with plasma TG levels. The effects of adenoviral-mediated human ApoF (hApoF) overexpression on plasma and hepatic TG were assessed in C57BL6/J mice. Surprisingly, hApoF overexpression increased both hepatic very low density lipoprotein (VLDL)-TG secretion and hepatic lipoprotein remnant clearance, associated a ~25% reduction in plasma TG levels. Conversely, reducing endogenous ApoF expression reduced VLDL secretion in vivo , and reduced hepatocyte VLDL uptake by ~15% in vitro . Transcriptomic analysis of APOF -overexpressing mouse livers revealed a gene signature related to enhanced ApoB-lipoprotein clearance, including increased expression of Ldlr and Lrp1 , among others. CONCLUSION:These data reveal a previously undescribed role for ApoF in the control of plasma and hepatic lipoprotein metabolism by favoring VLDL-TG secretion and hepatic lipoprotein remnant particle clearance. 10.1002/hep.32631
LRP1 is a master regulator of tau uptake and spread. Rauch Jennifer N,Luna Gabriel,Guzman Elmer,Audouard Morgane,Challis Collin,Sibih Youssef E,Leshuk Carolina,Hernandez Israel,Wegmann Susanne,Hyman Bradley T,Gradinaru Viviana,Kampmann Martin,Kosik Kenneth S Nature The spread of protein aggregates during disease progression is a common theme underlying many neurodegenerative diseases. The microtubule-associated protein tau has a central role in the pathogenesis of several forms of dementia known as tauopathies-including Alzheimer's disease, frontotemporal dementia and chronic traumatic encephalopathy. Progression of these diseases is characterized by the sequential spread and deposition of protein aggregates in a predictable pattern that correlates with clinical severity. This observation and complementary experimental studies have suggested that tau can spread in a prion-like manner, by passing to naive cells in which it templates misfolding and aggregation. However, although the propagation of tau has been extensively studied, the underlying cellular mechanisms remain poorly understood. Here we show that the low-density lipoprotein receptor-related protein 1 (LRP1) controls the endocytosis of tau and its subsequent spread. Knockdown of LRP1 significantly reduced tau uptake in H4 neuroglioma cells and in induced pluripotent stem cell-derived neurons. The interaction between tau and LRP1 is mediated by lysine residues in the microtubule-binding repeat region of tau. Furthermore, downregulation of LRP1 in an in vivo mouse model of tau spread was found to effectively reduce the propagation of tau between neurons. Our results identify LRP1 as a key regulator of tau spread in the brain, and therefore a potential target for the treatment of diseases that involve tau spread and aggregation. 10.1038/s41586-020-2156-5
Apolipoprotein E-containing lipoproteins and their extracellular interactions with LRP1 affect LPS-induced inflammation. Biological chemistry The linkage between low-density lipoprotein receptor-related protein (LRP)1-mediated metabolism of apolipoprotein (apo) E-containing lipoproteins (apoE-LP) and the lipopolysaccharide (LPS)-induced inflammatory response contributes to the pathogenesis of sepsis; however, the underlying mechanisms are unclear. Therefore, in this study, the effects of apoE-LP and their constituents on the mRNA expression of interleukin (IL)-6 and LRP1 were evaluated using a culture system of human fibroblasts supplemented with LPS and apoE-containing emulsion particles (apoE-EP). The affinity of apoE-LP for LPS was examined using the interaction between fluorescence-labeled LPS and serum lipoprotein fractions. LPS-induced inflammation significantly upregulated the mRNA expression of IL-6 and LRP1. This upregulation was markedly suppressed by pre-incubation of LPS with apoE-EP or its constituents (apoE or EP). The suppressive effect of apoE-EP on IL-6 upregulation was attenuated in the presence of lactoferrin, an inhibitor of LRP1. The prepared apoE-EP and serum triglyceride-rich lipoproteins showed significant affinity for LPS. However, these affinities appeared to be lower than expected based on the extent to which IL-6 upregulation was suppressed by pre-incubation of LPS with apoE-EP. Overall, these results indicate that LPS-induced inflammation may be regulated by 1) the LPS-neutralizing effect of apoE-LP, 2) anti-inflammatory effect of apoE, and 3) LRP1-mediated metabolic pathways. 10.1515/hsz-2024-0018
LDL receptor-related protein 1 and its interacting partners in tissue homeostasis. Current opinion in lipidology PURPOSE OF REVIEW:LDL receptor-related protein 1 (LRP1) is a multifunctional protein with endocytic and signal transduction properties due to its interaction with numerous extracellular ligands and intracellular proteins. This brief review highlights key developments in identifying novel functions of LRP1 in liver, lung, and the central nervous system in disease pathogenesis. RECENT FINDINGS:In hepatocytes, LRP1 complexes with phosphatidylinositol 4-phosphate 5-kinase-1 and its related protein to maintain intracellular levels of phosphatidylinositol (4,5) bisphosphate and preserve lysosome and mitochondria integrity. In contrast, in smooth muscle cells, macrophages, and endothelial cells, LRP1 interacts with various different extracellular ligands and intracellular proteins in a tissue-dependent and microenvironment-dependent manner to either enhance or suppress inflammation, disease progression or resolution. Similarly, LRP1 expression in astrocytes and oligodendrocyte progenitor cells regulates cell differentiation and maturation in a developmental-dependent manner to modulate neurogenesis, gliogenesis, and white matter repair after injury. SUMMARY:LRP1 modulates metabolic disease manifestation, inflammation, and differentiation in a cell-dependent, time-dependent, and tissue-dependent manner. Whether LRP1 expression is protective or pathogenic is dependent on its interaction with specific ligands and intracellular proteins, which in turn is dependent on the cell type and the microenvironment where these cells reside. 10.1097/MOL.0000000000000776
Convergent Signaling Pathways Controlled by LRP1 (Receptor-related Protein 1) Cytoplasmic and Extracellular Domains Limit Cellular Cholesterol Accumulation. El Asmar Zeina,Terrand Jérome,Jenty Marion,Host Lionel,Mlih Mohamed,Zerr Aurélie,Justiniano Hélène,Matz Rachel L,Boudier Christian,Scholler Estelle,Garnier Jean-Marie,Bertaccini Diego,Thiersé Danièle,Schaeffer Christine,Van Dorsselaer Alain,Herz Joachim,Bruban Véronique,Boucher Philippe The Journal of biological chemistry The low density lipoprotein receptor-related protein 1 (LRP1) is a ubiquitously expressed cell surface receptor that protects from intracellular cholesterol accumulation. However, the underlying mechanisms are unknown. Here we show that the extracellular (α) chain of LRP1 mediates TGFβ-induced enhancement of Wnt5a, which limits intracellular cholesterol accumulation by inhibiting cholesterol biosynthesis and by promoting cholesterol export. Moreover, we demonstrate that the cytoplasmic (β) chain of LRP1 suffices to limit cholesterol accumulation in LRP1(-/-) cells. Through binding of Erk2 to the second of its carboxyl-terminal NPXY motifs, LRP1 β-chain positively regulates the expression of ATP binding cassette transporter A1 (ABCA1) and of neutral cholesterol ester hydrolase (NCEH1). These results highlight the unexpected functions of LRP1 and the canonical Wnt5a pathway and new therapeutic potential in cholesterol-associated disorders including cardiovascular diseases. 10.1074/jbc.M116.714485
APOE genotype moderates the relationship between LRP1 polymorphism and cognition across the Alzheimer's disease spectrum via disturbing default mode network. CNS neuroscience & therapeutics AIMS:This study aims to investigate the mechanisms by which apolipoprotein E (APOE) genotype modulates the relationship between low-density lipoprotein receptor-related protein 1 (LRP1) rs1799986 variant on the default mode network (DMN) and cognition in Alzheimer's disease (AD) spectrum populations. METHODS:Cross-sectional 168 subjects of AD spectrum were obtained from Alzheimer's Disease Neuroimaging Initiative database with resting-state fMRI scans and neuropsychological scores data. Multivariable linear regression analysis was adopted to investigate the main effects and interaction of LRP1 and disease on the DMN. Moderation and interactive analyses were performed to assess the relationships among APOE, LRP1, and cognition. A support vector machine model was used to classify AD spectrum with altered connectivity as an objective diagnostic biomarker. RESULTS:The main effects and interaction of LRP1 and disease were mainly focused on the core hubs of frontal-parietal network. Several brain regions with altered connectivity were correlated with cognitive scores in LRP1-T carriers, but not in non-carriers. APOE regulated the effect of LRP1 on cognitive performance. The functional connectivity of numerous brain regions within LRP1-T carriers yielded strong power for classifying AD spectrum. CONCLUSION:These findings suggested LRP1 could affect DMN and provided a stage-dependent neuroimaging biomarker for classifying AD spectrum populations. 10.1111/cns.13716
Macrophage LRP1 Promotes Diet-Induced Hepatic Inflammation and Metabolic Dysfunction by Modulating Wnt Signaling. Mediators of inflammation Hepatic inflammation is associated with the development of insulin resistance, which can perpetuate the disease state and may increase the risk of metabolic syndrome and diabetes. Despite recent advances, mechanisms linking hepatic inflammation and insulin resistance are still unclear. The low-density lipoprotein receptor-related protein 1 (LRP1) is a large endocytic and signaling receptor that is highly expressed in macrophages, adipocytes, hepatocytes, and vascular smooth muscle cells. To investigate the potential role of macrophage LRP1 in hepatic inflammation and insulin resistance, we conducted experiments using macrophage-specific LRP1-deficient mice ( ) generated on a low-density lipoprotein receptor knockout ( ) background and fed a Western diet. mice gained less body weight and had improved glucose tolerance compared to mice. Livers from mice displayed lower levels of gene expression for several inflammatory cytokines, including and , and reduced phosphorylation of GSK3 and p38 MAPK proteins. Furthermore, LRP1-deficient peritoneal macrophages displayed altered cholesterol metabolism. Finally, circulating levels of sFRP-5, a potent anti-inflammatory adipokine that functions as a decoy receptor for Wnt5a, were elevated in mice. Surface plasmon resonance experiments revealed that sFRP-5 is a novel high affinity ligand for LRP1, revealing that LRP1 regulates levels of this inhibitor of Wnt5a-mediated signaling. Collectively, our results suggest that LRP1 expression in macrophages promotes hepatic inflammation and the development of glucose intolerance and insulin resistance by modulating Wnt signaling. 10.1155/2018/7902841
LRP1 controls cPLA2 phosphorylation, ABCA1 expression and cellular cholesterol export. Zhou Li,Choi Hong Y,Li Wei-Ping,Xu Fang,Herz Joachim PloS one BACKGROUND:ATP-binding cassette transporter A1 mediates apolipoprotein AI-dependent efflux of cholesterol and thereby removes cholesterol from peripheral tissues. ABCA1 expression is tightly regulated and deficiency of this cholesterol transporter results in cholesterol accumulation within cells. Low-density lipoprotein receptor-related protein 1 (LRP1) participates in lipid metabolism and energy homeostasis by endocytosis of apolipoprotein E-containing lipoproteins and modulation of cellular proliferation signals. METHODS AND PRINCIPAL FINDINGS:In the present study, we demonstrate a new role for LRP1 in reverse cholesterol transport. Absence of LRP1 expression results in increased PDGFRbeta signaling and sequential activation of the mitogen-activated protein kinase signaling pathway, which increases phosphorylation of cytosolic phospholipase A(2) (cPLA(2)). Phosphorylated and activated cPLA(2) releases arachidonic acid from the phospholipid pool. Overproduction of arachidonic acid suppresses the activation of LXR/RXR heterodimers bound to the promoter of LXR regulated genes such as ABCA1, resulting in greatly reduced ABCA1 expression. CONCLUSIONS AND SIGNIFICANCE:LRP1 regulates LXR-mediated gene transcription and participates in reverse cholesterol transport by controlling cPLA(2) activation and ABCA1 expression. LRP1 thus functions as a physiological integrator of cellular lipid homeostasis with signals that regulate cellular proliferation and vascular wall integrity. 10.1371/journal.pone.0006853
A novel modulatory mechanism of transforming growth factor-beta signaling through decorin and LRP-1. Cabello-Verrugio Claudio,Brandan Enrique The Journal of biological chemistry Transforming growth factor-beta (TGF-beta) is a multifunctional cytokine that signals to the nucleus through cell surface transmembrane receptors with serine/threonine kinase activity and cytoplasmic effectors, including Smad proteins. Here we describe two novel modulators of this pathway, lipoprotein-receptor related protein (LRP-1) and decorin. Decorin null (Dcn null) myoblasts showed a diminished TGF-beta response that is restored by decorin re-expression. Importantly, this reactivation occurs without changes in the binding to TGF-beta receptors, Smad protein phosphorylation, or Smad-4 nuclear translocation. In wild type myoblasts, inhibition of decorin binding to LRP-1 and depletion of LRP-1 inhibited TGF-beta response to levels similar to those observed in Dcn null myoblasts. Re-expression of decorin in Dcn null myoblasts cannot restore TGF-beta response if the Smad pathway or phosphatidylinositol 3-kinase activity is inhibited, suggesting that this LRP-1-decorin modulatory pathway requires activation of the Smad pathway by TGF-beta and involves phosphatidylinositol 3-kinase activity. This work unveils a new regulatory mechanism for TGF-beta signaling by decorin and LRP-1. 10.1074/jbc.M700243200
Endothelium-specific depletion of LRP1 improves glucose homeostasis through inducing osteocalcin. Nature communications The vascular endothelium is present within metabolic organs and actively regulates energy metabolism. Here we show osteocalcin, recognized as a bone-secreted metabolic hormone, is expressed in mouse primary endothelial cells isolated from heart, lung and liver. In human osteocalcin promoter-driven green fluorescent protein transgenic mice, green fluorescent protein signals are enriched in endothelial cells lining aorta, small vessels and capillaries and abundant in aorta, skeletal muscle and eye of adult mice. The depletion of lipoprotein receptor-related protein 1 induces osteocalcin through a Forkhead box O -dependent pathway in endothelial cells. Whereas depletion of osteocalcin abolishes the glucose-lowering effect of low-density lipoprotein receptor-related protein 1 depletion, osteocalcin treatment normalizes hyperglycemia in multiple mouse models. Mechanistically, osteocalcin receptor-G protein-coupled receptor family C group 6 member A and insulin-like-growth-factor-1 receptor are in the same complex with osteocalcin and required for osteocalcin-promoted insulin signaling pathway. Therefore, our results reveal an endocrine/paracrine role of endothelial cells in regulating insulin sensitivity, which may have therapeutic implications in treating diabetes and insulin resistance through manipulating vascular endothelium. 10.1038/s41467-021-25673-6
Low density lipoprotein receptor-related protein 1 (LRP1) forms a signaling complex with platelet-derived growth factor receptor-beta in endosomes and regulates activation of the MAPK pathway. Muratoglu Selen Catania,Mikhailenko Irina,Newton Christopher,Migliorini Mary,Strickland Dudley K The Journal of biological chemistry In addition to its endocytic function, the low density lipoprotein receptor-related protein 1 (LRP1) also contributes to cell signaling events. In the current study, the potential of LRP1 to modulate the platelet-derived growth factor (PDGF) signaling pathway was investigated. PDGF is a key regulator of cell migration and proliferation and mediates the tyrosine phosphorylation of LRP1 within its cytoplasmic domain. In WI-38 fibroblasts, PDGF-mediated LRP1 tyrosine phosphorylation occurred at 37 degrees C but not at 4 degrees C, where endocytosis is minimized. Furthermore, blockade of endocytosis with the dynamin inhibitor, dynasore, also prevented PDGF-mediated LRP1 tyrosine phosphorylation. Immunofluorescence studies revealed co-localization of LRP1 with the PDGF receptor after PDGF treatment within endosomal compartments, whereas surface biotinylation experiments confirmed that phosphorylated LRP1 primarily originates from intracellular compartments. Together, the data reveal the association of these two receptors in endosomal compartments where they form a signaling complex. To study the contribution of LRP1 to PDGF signaling, we used mouse embryonic fibroblasts genetically deficient in LRP1 and identified phenotypic changes in these cell lines in response to PDGF stimulation by performing phospho-site profiling. Of 38 phosphorylated proteins analyzed, 8 were significantly different in LRP1 deficient fibroblasts and were restored when LRP1 was expressed back in these cells. Importantly, the results revealed that LRP1 expression is necessary for PDGF-mediated activation of ERK. Overall, the studies reveal that LRP1 associates with the PDGF receptor in endosomal compartments and modulates its signaling properties affecting the MAPK and Akt/phosphatidylinositol 3-kinase pathways. 10.1074/jbc.M109.046672
Letter by Potere et al Regarding Article, "Deletion of Macrophage Low-Density Lipoprotein Receptor-Related Protein 1 (LRP1) Accelerates Atherosclerosis Regression and Increases C-C Chemokine Receptor Type 7 (CCR7) Expression in Plaque Macrophages". Potere Nicola,Toldo Stefano,Abbate Antonio Circulation 10.1161/CIRCULATIONAHA.118.036486
Low density lipoprotein receptor-related protein 1 (LRP1) modulates N-methyl-D-aspartate (NMDA) receptor-dependent intracellular signaling and NMDA-induced regulation of postsynaptic protein complexes. Nakajima Chikako,Kulik Akos,Frotscher Michael,Herz Joachim,Schäfer Michael,Bock Hans H,May Petra The Journal of biological chemistry The lipoprotein receptor LRP1 is essential in neurons of the central nervous system, as was revealed by the analysis of conditional Lrp1-deficient mouse models. The molecular basis of its neuronal functions, however, is still incompletely understood. Here we show by immunocytochemistry, electron microscopy, and postsynaptic density preparation that LRP1 is located postsynaptically. Basal and NMDA-induced phosphorylation of the transcription factor cAMP-response element-binding protein (CREB) as well as NMDA target gene transcription are reduced in LRP1-deficient neurons. In control neurons, NMDA promotes γ-secretase-dependent release of the LRP1 intracellular domain (LRP1-ICD). However, pull-down and chromatin immunoprecipitation (ChIP) assays showed no direct interaction between the LRP1-ICD and either CREB or target gene promoters. On the other hand, NMDA-induced degradation of the postsynaptic scaffold protein PSD-95 was impaired in the absence of LRP1, whereas its ubiquitination was increased, indicating that LRP1 influences the composition of postsynaptic protein complexes. Accordingly, NMDA-induced internalization of the AMPA receptor subunit GluA1 was impaired in LRP1-deficient neurons. These results show a role of LRP1 in the regulation and turnover of synaptic proteins, which may contribute to the reduced dendritic branching and to the neurological phenotype observed in the absence of LRP1. 10.1074/jbc.M112.444364
Apolipoprotein E isoforms and their Cys-thiol modifications impact LRP1-mediated metabolism of triglyceride-rich lipoproteins. FEBS letters The low-density lipoprotein (LDL) receptor-related protein (LRP)1 participates in the metabolism of apolipoprotein (apo) E-containing lipoproteins (apoE-LP). We investigated the effects of modifications of cysteine (Cys)-thiol of apoE on LRP1-mediated metabolism. Among the three isoforms, apoE2-LP exhibited the lowest affinity for LRP1 but was significantly catabolized, whereas apoE4-LP was sufficiently bound to LRP1 but showed the lowest catabolic capability. The reduction enhanced the binding and suppressed the catabolism of apoE3-LP, but had no effect on apoE2-LP. The formation of disulfide-linked complexes with apoAII suppressed binding, but enhanced the catabolism of apoE2-LP. Redox modifications of apoE-Cys-thiol may modulate the LRP1-mediated metabolism of apoE2- or apoE3-LP, but not apoE4-LP. The failure of this function may be involved in the pathophysiology of dyslipidemia. 10.1002/1873-3468.14803
LDL Receptor-Related Protein-1 (LRP1) Regulates Cholesterol Accumulation in Macrophages. Lillis Anna P,Muratoglu Selen Catania,Au Dianaly T,Migliorini Mary,Lee Mi-Jeong,Fried Susan K,Mikhailenko Irina,Strickland Dudley K PloS one Within the circulation, cholesterol is transported by lipoprotein particles and is taken up by cells when these particles associate with cellular receptors. In macrophages, excessive lipoprotein particle uptake leads to foam cell formation, which is an early event in the development of atherosclerosis. Currently, mechanisms responsible for foam cell formation are incompletely understood. To date, several macrophage receptors have been identified that contribute to the uptake of modified forms of lipoproteins leading to foam cell formation, but the in vivo contribution of the LDL receptor-related protein 1 (LRP1) to this process is not known [corrected]. To investigate the role of LRP1 in cholesterol accumulation in macrophages, we generated mice with a selective deletion of LRP1 in macrophages on an LDL receptor (LDLR)-deficient background (macLRP1-/-). After feeding mice a high fat diet for 11 weeks, peritoneal macrophages isolated from Lrp+/+ mice contained significantly higher levels of total cholesterol than those from macLRP1-/- mice. Further analysis revealed that this was due to increased levels of cholesterol esters. Interestingly, macLRP1-/- mice displayed elevated plasma cholesterol and triglyceride levels resulting from accumulation of large, triglyceride-rich lipoprotein particles in the circulation. This increase did not result from an increase in hepatic VLDL biosynthesis, but rather results from a defect in catabolism of triglyceride-rich lipoprotein particles in macLRP1-/- mice. These studies reveal an important in vivo contribution of macrophage LRP1 to cholesterol homeostasis. 10.1371/journal.pone.0128903
DNA methylation at gene locus mediates the association between maternal total cholesterol changes in pregnancy and cord blood leptin levels. Guay Simon-Pierre,Houde Andrée-Anne,Breton Edith,Baillargeon Jean-Patrice,Perron Patrice,Gaudet Daniel,Hivert Marie-France,Brisson Diane,Bouchard Luigi Journal of developmental origins of health and disease Placental lipids transfer is essential for optimal fetal development, and alterations of these mechanisms could lead to a higher risk of adverse birth outcomes. Low-density lipoprotein receptor (LDLR), LDL receptor-related protein 1 (LRP1), and scavenger receptor class B type 1 (SCARB1) genes are encoding lipoprotein receptors expressed in the placenta where they participate in cholesterol exchange from maternal to fetal circulation. The aim of this study was thus to investigate the association between maternal lipid changes occurring in pregnancy, placental DNA methylation (DNAm) variations at LDLR, LRP1, and SCARB1 gene loci, and newborn's anthropometric profile at birth. Sixty-nine normoglycemic women were followed from the first trimester of pregnancy until delivery. Placental DNAm was quantified at 43 Cytosine-phosphate-Guanines (CpGs) at LDLR, LRP1, and SCARB1 gene loci using pyrosequencing: 4 CpGs were retained for further analysis. Maternal clinical data were collected at each trimester of pregnancy. Newborns' data were collected from medical records. Statistical models included minimally newborn sex and gestational and maternal age. Maternal total cholesterol changes during pregnancy (ΔT3-T1) were correlated with DNAm variations at LDLR (r = -0.32, p = 0.01) and LRP1 (r = 0.34, p = 0.007). DNAm at these loci was also correlated with newborns' cord blood triglyceride and leptin levels. Mediation analysis supports a causal relationship between maternal cholesterol changes, DNAm levels at LRP1 locus, and cord blood leptin concentration (pmediation = 0.02). These results suggest that LRP1 DNAm link maternal blood cholesterol changes in pregnancy and offspring adiposity at birth, which provide support for a better follow-up of blood lipids in pregnancy. 10.1017/S204017441900076X
Diabetes: LRP1 - a key modulator of β-cell function in T2DM. Morris Alan Nature reviews. Endocrinology 10.1038/nrendo.2018.30
TLR Crosstalk Activates LRP1 to Recruit Rab8a and PI3Kγ for Suppression of Inflammatory Responses. Luo Lin,Wall Adam A,Tong Samuel J,Hung Yu,Xiao Zhijian,Tarique Abdullah A,Sly Peter D,Fantino Emmanuelle,Marzolo María-Paz,Stow Jennifer L Cell reports The multi-ligand endocytic receptor, low-density lipoprotein-receptor-related protein 1 (LRP1), has anti-inflammatory roles in disease. Here, we reveal that pathogen-activated Toll-like receptors (TLRs) activate LRP1 in human and mouse primary macrophages, resulting in phosphorylation of LRP1 at Y4507. In turn, this allows LRP1 to activate and recruit the guanosine triphosphatase (GTPase), Rab8a, with p110γ/p101 as its phosphatidylinositol 3-kinase (PI3K) effector complex. PI3Kγ is a known regulator of TLR signaling and macrophage reprogramming. LRP1 coincides with Rab8a at signaling sites on macropinosomal membranes. In LRP1-deficient cells, TLR-induced Rab8 activation is abolished. CRISPR-mediated knockout of LRP1 in macrophages alters Akt/mTOR signaling and produces a pro-inflammatory bias in cytokine outputs, mimicking the Rab8a knockout and PI3Kγ-null phenotype. Thus, TLR-LRP1 crosstalk activates the Rab8a/PI3Kγ complex for reprogramming macrophages, revealing this as a key mechanism through which LRP1 helps to suppress inflammation. 10.1016/j.celrep.2018.08.028
LRP1 receptor controls adipogenesis and is up-regulated in human and mouse obese adipose tissue. Masson Olivier,Chavey Carine,Dray Cédric,Meulle Aline,Daviaud Danielle,Quilliot Didier,Muller Catherine,Valet Philippe,Liaudet-Coopman Emmanuelle PloS one The cell surface low-density lipoprotein receptor-related protein 1, LRP1, plays a major role in lipid metabolism. The question that remains open concerns the function of LRP1 in adipogenesis. Here, we show that LRP1 is highly expressed in murine preadipocytes as well as in primary culture of human adipocytes. Moreover, LRP1 remains abundantly synthesised during mouse and human adipocyte differentiation. We demonstrate that LRP1 silencing in 3T3F442A murine preadipocytes significantly inhibits the expression of PPARgamma, HSL and aP2 adipocyte differentiation markers after adipogenesis induction, and leads to lipid-depleted cells. We further show that the absence of lipids in LRP1-silenced preadipocytes is not caused by lipolysis induction. In addition, we provide the first evidences that LRP1 is significantly up-regulated in obese C57BI6/J mouse adipocytes and obese human adipose tissues. Interestingly, silencing of LRP1 in fully-differentiated adipocytes also reduces cellular lipid level and is associated with an increase of basal lipolysis. However, the ability of mature adipocytes to induce lipolysis is independent of LRP1 expression. Altogether, our findings highlight the dual role of LRP1 in the control of adipogenesis and lipid homeostasis, and suggest that LRP1 may be an important therapeutic target in obesity. 10.1371/journal.pone.0007422
Activation of LRP1 Ameliorates Cerebral Ischemia/Reperfusion Injury and Cognitive Decline by Suppressing Neuroinflammation and Oxidative Stress through TXNIP/NLRP3 Signaling Pathway in Mice. Oxidative medicine and cellular longevity Cerebral ischemia/reperfusion (I/R) injury is a clinical event associated with high morbidity and mortality. Neuroinflammation plays a crucial role in the pathogenesis of I/R-induced brain injury and cognitive decline. Low-density lipoprotein receptor-related protein-1 (LRP1) can exert strong neuroprotection in experimental intracerebral hemorrhage. However, whether LRP1 can confer neuroprotective effects after cerebral I/R is yet to be elucidated. The present study is aimed at investigating the effects of LRP1 activation on cerebral I/R injury and deducing the underlying mechanism involving TXNIP/NLRP3 signaling pathway. Cerebral I/R injury was induced in mice by bilateral common carotid artery occlusion. LPR1 ligand, apoE-mimic peptide COG1410, was administered intraperitoneally. To elucidate the underlying mechanism, overexpression of TXNIP was achieved via the hippocampal injection of AAV-TXNIP before COG1410 treatment. Neurobehavioral tests, brain water content, immunofluorescence, Western blot, enzyme-linked immunosorbent assay, HE, and terminal deoxynucleotidyl transferase dUTP nick end labeling staining were performed. Our results showed that the expressions of endogenous LRP1, TXNIP, NLRP3, procaspase-1, and cleaved caspase-1 were increased after cerebral I/R. COG1410 significantly ameliorated cerebral I/R-induced neurobehavioral deficits, brain edema, histopathological damage, and poor survival rate. Interestingly, COG1410 inhibited microglia proinflammatory polarization and promoted anti-inflammatory polarization, decreased oxidative stress, attenuated apoptosis, and inhibited the expression of the TXNIP/NLRP3 signaling pathway. However, the benefits of COG1410 were abolished by TXNIP overexpression. Thus, our study suggested that LRP1 activation with COG1410 attenuated cerebral I/R injury at least partially related to modulating microglial polarization through TXNIP/NLRP3 signaling pathway in mice. Thus, COG1410 treatment might serve as a promising therapeutic approach in the management of cerebral I/R patients. 10.1155/2022/8729398
Silencing of LRP1 Exacerbates Inflammatory Response Via TLR4/NF-κB/MAPKs Signaling Pathways in APP/PS1 Transgenic Mice. He Yingying,Ruganzu John Bosco,Zheng Quzhao,Wu Xiangyuan,Jin Hui,Peng Xiaoqian,Ding Bo,Lin Chengheng,Ji Shengfeng,Ma Yanbing,Yang Weina Molecular neurobiology Activation of glial cells (including microglia and astrocytes) appears central to the initiation and progression of neuroinflammation in Alzheimer's disease (AD). The low-density lipoprotein receptor-related protein 1 (LRP1) is a major receptor for amyloid-β (Aβ), which plays a critical role in AD pathogenesis. LRP1 regulates inflammatory response by modulating the release of pro-inflammatory cytokines and phagocytosis. However, the effects of LRP1 on microglia- and astrocytic cell-mediated neuroinflammation and their underlying mechanisms in AD remain unclear. Therefore, using APP/PS1 transgenic mice, we found that LRP1 is downregulated during disease progression. Silencing of brain LRP1 markedly exacerbated AD-related neuropathology including Aβ deposition, neuroinflammation, and synaptic and neuronal loss, which was accompanied by a decline in spatial cognitive ability. Further mechanistic study revealed that silencing of LRP1 initiated neuroinflammation by increasing microgliosis and astrogliosis, enhancing pro-inflammatory cytokine production, and regulating toll-like receptor 4 (TLR4)-mediated activation of nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways. Taken together, these findings indicated that LRP1 suppresses microglia and astrocytic cell activation by modulating TLR4/NF-κB/MAPK signaling pathways. Our results further provide insights into the role of LRP1 in AD pathogenesis and highlight LRP1 as a potential therapeutic target for the treatment of AD. 10.1007/s12035-020-01982-7
Endothelial LRP1 regulates metabolic responses by acting as a co-activator of PPARγ. Mao Hua,Lockyer Pamela,Li Luge,Ballantyne Christie M,Patterson Cam,Xie Liang,Pi Xinchun Nature communications Low-density lipoprotein receptor-related protein 1 (LRP1) regulates lipid and glucose metabolism in liver and adipose tissue. It is also involved in central nervous system regulation of food intake and leptin signalling. Here we demonstrate that endothelial Lrp1 regulates systemic energy homeostasis. Mice with endothelial-specific Lrp1 deletion display improved glucose sensitivity and lipid profiles combined with increased oxygen consumption during high-fat-diet-induced obesity. We show that the intracellular domain of Lrp1 interacts with the nuclear receptor Pparγ, a central regulator of lipid and glucose metabolism, acting as its transcriptional co-activator in endothelial cells. Therefore, Lrp1 not only acts as an endocytic receptor but also directly participates in gene transcription. Our findings indicate an underappreciated functional role of endothelium in maintaining systemic energy homeostasis. 10.1038/ncomms14960
LRP1 mediates the IGF-1-induced GLUT1 expression on the cell surface and glucose uptake in Müller glial cells. Actis Dato Virginia,Sánchez María Cecilia,Chiabrando Gustavo Alberto Scientific reports Insulin-like Growth Factor-1 (IGF-1) is involved in the normal development and survival of retinal cells. Low-density lipoprotein Receptor-related Protein-1 (LRP1) plays a key role on the regulation of several membrane proteins, such as the IGF-1 receptor (IGF-1R). In brain astrocytes, LRP1 interact with IGF-1R and the glucose transporter type 1 (GLUT1), regulating the glucose uptake in these cells. Although GLUT1 is expressed in retinal Müller Glial Cells (MGCs), its regulation is not clear yet. Here, we investigated whether IGF-1 modulates GLUT1 traffic to plasma membrane (PM) and glucose uptake, as well as the involvement of LRP1 in this process in the human Müller glial-derived cell line (MIO-M1). We found that IGF-1 produced GLUT1 translocation to the PM, in a time-dependent manner involving the intracellular signaling activation of MAPK/ERK and PIK/Akt pathways, and generated a significant glucose uptake. Moreover, we found a molecular association between LRP1 and GLUT1, which was significantly reduced by IGF-1. Finally, cells treated with specific siRNA for LRP1 showed an impaired GLUT1 expression on PM and decreased glucose uptake induced by IGF-1. We conclude that IGF-1 regulates glucose homeostasis in MGCs involving the expression of LRP1. 10.1038/s41598-021-84090-3
LRP1 knockdown aggravates Aβ-stimulated microglial and astrocytic neuroinflammatory responses by modulating TLR4/NF-κB/MAPKs signaling pathways. He Yingying,Ruganzu John Bosco,Jin Hui,Peng Xiaoqian,Ji Shengfeng,Ma Yanbing,Zheng Liming,Yang Weina Experimental cell research Neuroinflammation is an important pathological feature and an early event in the pathogenesis of Alzheimer's disease (AD), which is characterized by activation of microglia and astrocytes. Low-density lipoprotein receptor-related protein 1 (LRP1) is an endocytic receptor that is abundantly expressed in neurons, microglia, and astrocytes, and plays a critical role in AD pathogenesis. There is increasing evidence to show that LRP1 regulates inflammatory responses by modulating the release of pro-inflammatory cytokines and phagocytosis. However, the effects of LRP1 on β-amyloid protein (Aβ)-induced microglial and astrocytic neuroinflammatory responses and its underlying mechanisms have not been studied in detail. In the present study, knockdown of LRP1 significantly enhanced Aβ-stimulated neuroinflammation by increasing the production of pro-inflammatory cytokines in both BV2 microglial cells and mouse primary astrocytes. Furthermore, it is revealed that LRP1 knockdown further led to the activation of nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinases (MAPKs) signaling pathways. The phosphorylation of IκBα, p38, and JNK was significantly up-regulated in LRP1 knockdown BV2 microglial cells and primary astrocytes. Meanwhile, LRP1 knockdown increased expression of the NF-κB p65 subunit in the nucleus while decreased its expression in the cytoplasm. Besides, the upstream signaling adaptor molecules such as toll-like receptor 4 (TLR4), myeloid differentiation primary response protein 88 (MyD88), and tumor necrosis factor receptor-associated factor 6 (TRAF6) were also further increased. Moreover, blockade of NF-κB, p38, and JNK inhibited the production of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6) induced by the knockdown of LRP1. Taken together, these findings indicated that LRP1 as an effective therapeutic target against AD and other neuroinflammation related diseases. 10.1016/j.yexcr.2020.112166
Phosphorylation of LRP1: regulation of transport and signal transduction. van der Geer Peter Trends in cardiovascular medicine Low-density lipoprotein receptor-related protein 1 (LRP1) is a member of the low-density lipoprotein receptor family. Members of this family were once thought to be involved exclusively in receptor-mediated uptake of extracellular molecules, including lipoproteins and proteases. This article reviews recent work that indicates that LRP1 is phosphorylated on both serine and tyrosine residues. Tyrosine-phosphorylated LRP1 is specifically associated with the cellular docking protein Shc. The results suggest that ligand internalization by LRP1 is regulated by phosphorylation. In addition, LRP1 is now, like several of its close relatives, implicated in signal transduction. 10.1016/s1050-1738(02)00154-8
Loss of LRP1 Promotes Hepatocellular Carcinoma Progression via UFL1-Mediated Activation of NF-κB Signaling. Advanced science (Weinheim, Baden-Wurttemberg, Germany) Low-density lipoprotein receptor-related protein-1 (LRP1) is thought to be correlated with hepatocellular carcinoma (HCC) invasion and metastasis. However, the precise mechanism through which LRP1 contributes to HCC progression remains unclear. Here, lower LRP1 levels are associated with malignant progression, and poor prognosis in patients with HCC is shown. LRP1 knockdown enhances the tumorigenicity of HCC cells in vitro and in vivo, whereas overexpression of either LRP1 or its β-chain has the opposite effect. Mechanistically, LRP1 knockdown promotes the binding of ubiquitin-like modifier 1 ligating enzyme 1 (UFL1) to OGA and accelerates ubiquitin-mediated OGA degradation, leading to increased O-GlcNAcylation of nuclear factor-kappa B (NF-κB) and subsequent inhibition of pro-apoptotic gene expression. Conversely, exogenously expressed truncated β-chain (β∆) stabilizes OGA by disrupting the association between UFL1 and OGA, consequently abolishing the anti-apoptotic effects of O-GlcNAcylated NF-κB. The findings identify LRP1, particularly its β-chain, as a novel upstream control factor that facilitates the stabilization of the OGA protein, thereby suppressing NF-κB signaling and attenuating HCC progression, thus suggesting a novel therapeutic strategy for HCC. 10.1002/advs.202401672
Novel insights into the multifaceted and tissue-specific roles of the endocytic receptor LRP1. The Journal of biological chemistry Receptor-mediated endocytosis provides a mechanism for the selective uptake of specific molecules thereby controlling the composition of the extracellular environment and biological processes. The low-density lipoprotein receptor-related protein 1 (LRP1) is a widely expressed endocytic receptor that regulates cellular events by modulating the levels of numerous extracellular molecules via rapid endocytic removal. LRP1 also participates in signalling pathways through this modulation as well as in the interaction with membrane receptors and cytoplasmic adaptor proteins. LRP1 SNPs are associated with several diseases and conditions such as migraines, aortic aneurysms, cardiopulmonary dysfunction, corneal clouding, and bone dysmorphology and mineral density. Studies using Lrp1 KO mice revealed a critical, nonredundant and tissue-specific role of LRP1 in regulating various physiological events. However, exactly how LRP1 functions to regulate so many distinct and specific processes is still not fully clear. Our recent proteomics studies have identified more than 300 secreted proteins that either directly interact with LRP1 or are modulated by LRP1 in various tissues. This review will highlight the remarkable ability of this receptor to regulate secreted molecules in a tissue-specific manner and discuss potential mechanisms underpinning such specificity. Uncovering the depth of these "hidden" specific interactions modulated by LRP1 will provide novel insights into a dynamic and complex extracellular environment that is involved in diverse biological and pathological processes. 10.1016/j.jbc.2024.107521
LRP1 in vascular mural cells modulates cerebrovascular integrity and function in the presence of APOE4. JCI insight Cerebrovasculature is critical in maintaining brain homeostasis; its dysregulation often leads to vascular cognitive impairment and dementia (VCID) during aging. VCID is the second most prevalent cause of dementia in the elderly, after Alzheimer's disease (AD), with frequent cooccurrence of VCID and AD. While multiple factors are involved in the pathogenesis of AD and VCID, APOE4 increases the risk for both diseases. A major apolipoprotein E (apoE) receptor, the low-density lipoprotein receptor-related protein 1 (LRP1), is abundantly expressed in vascular mural cells (pericytes and smooth muscle cells). Here, we investigated how deficiency of vascular mural cell LRP1 affects the cerebrovascular system and cognitive performance using vascular mural cell-specific Lrp1-KO mice (smLrp1-/-) in a human APOE3 or APOE4 background. We found that spatial memory was impaired in the 13- to 16-month-old APOE4 smLrp1-/- mice but not in the APOE3 smLrp1-/- mice, compared with their respective littermate control mice. These disruptions in the APOE4 smLrp1-/- mice were accompanied with excess paravascular glial activation and reduced cerebrovascular collagen IV. In addition, blood-brain barrier (BBB) integrity was disrupted in the APOE4 smLrp1-/- mice. Together, our results suggest that vascular mural cell LRP1 modulates cerebrovasculature integrity and function in an APOE genotype-dependent manner. 10.1172/jci.insight.163822
Low-density lipoprotein receptor-related protein 1 (LRP1) is a novel receptor for apolipoprotein A4 (APOA4) in adipose tissue. Qu Jie,Fourman Sarah,Fitzgerald Maureen,Liu Min,Nair Supna,Oses-Prieto Juan,Burlingame Alma,Morris John H,Davidson W Sean,Tso Patrick,Bhargava Aditi Scientific reports Apolipoprotein A4 (APOA4) is one of the most abundant and versatile apolipoproteins facilitating lipid transport and metabolism. APOA4 is synthesized in the small intestine, packaged onto chylomicrons, secreted into intestinal lymph and transported via circulation to several tissues, including adipose. Since its discovery nearly 4 decades ago, to date, only platelet integrin αIIbβ3 has been identified as APOA4 receptor in the plasma. Using co-immunoprecipitation coupled with mass spectrometry, we probed the APOA4 interactome in mouse gonadal fat tissue, where ApoA4 gene is not transcribed but APOA4 protein is abundant. We demonstrate that lipoprotein receptor-related protein 1 (LRP1) is the cognate receptor for APOA4 in adipose tissue. LRP1 colocalized with APOA4 in adipocytes; it interacted with APOA4 under fasting condition and their interaction was enhanced during lipid feeding concomitant with increased APOA4 levels in plasma. In 3T3-L1 mature adipocytes, APOA4 promoted glucose uptake both in absence and presence of insulin in a dose-dependent manner. Knockdown of LRP1 abrogated APOA4-induced glucose uptake as well as activation of phosphatidylinositol 3 kinase (PI3K)-mediated protein kinase B (AKT). Taken together, we identified LRP1 as a novel receptor for APOA4 in promoting glucose uptake. Considering both APOA4 and LRP1 are multifunctional players in lipid and glucose metabolism, our finding opens up a door to better understand the molecular mechanisms along APOA4-LRP1 axis, whose dysregulation leads to obesity, cardiovascular disease, and diabetes. 10.1038/s41598-021-92711-0
Activated Alpha-2 Macroglobulin Improves Insulin Response via LRP1 in Lipid-Loaded HL-1 Cardiomyocytes. Actis Dato Virginia,Chiabrando Gustavo Alberto International journal of molecular sciences Activated alpha-2 Macroglobulin (αM*) is specifically recognized by the cluster I/II of LRP1 (Low-density lipoprotein Receptor-related Protein-1). LRP1 is a scaffold protein for insulin receptor involved in the insulin-induced glucose transporter type 4 (GLUT4) translocation to plasma membrane and glucose uptake in different types of cells. Moreover, the cluster II of LRP1 plays a critical role in the internalization of atherogenic lipoproteins, such as aggregated Low-density Lipoproteins (aggLDL), promoting intracellular cholesteryl ester (CE) accumulation mainly in arterial intima and myocardium. The aggLDL uptake by LRP1 impairs GLUT4 traffic and the insulin response in cardiomyocytes. However, the link between CE accumulation, insulin action, and cardiac dysfunction are largely unknown. Here, we found that αM* increased GLUT4 expression on cell surface by Rab4, Rab8A, and Rab10-mediated recycling through PIK/Akt and MAPK/ERK signaling activation. Moreover, αM* enhanced the insulin response increasing insulin-induced glucose uptake rate in the myocardium under normal conditions. On the other hand, αM* blocked the intracellular CE accumulation, improved the insulin response and reduced cardiac damage in HL-1 cardiomyocytes exposed to aggLDL. In conclusion, αM* by its agonist action on LRP1, counteracts the deleterious effects of aggLDL in cardiomyocytes, which may have therapeutic implications in cardiovascular diseases associated with hypercholesterolemia. 10.3390/ijms22136915
LRP1-Mediated AggLDL Endocytosis Promotes Cholesteryl Ester Accumulation and Impairs Insulin Response in HL-1 Cells. Actis Dato Virginia,Benitez-Amaro Aleyda,de Gonzalo-Calvo David,Vazquez Maximiliano,Bonacci Gustavo,Llorente-Cortés Vicenta,Chiabrando Gustavo Alberto Cells The cardiovascular disease (CVD) frequently developed during metabolic syndrome and type-2 diabetes mellitus is associated with increased levels of aggregation-prone small LDL particles. Aggregated LDL (aggLDL) internalization is mediated by low-density lipoprotein receptor-related protein-1 (LRP1) promoting intracellular cholesteryl ester (CE) accumulation. Additionally, LRP1 plays a key function in the regulation of insulin receptor (IR) and glucose transporter type 4 (GLUT4) activities. Nevertheless, the link between LRP1, CE accumulation, and insulin response has not been previously studied in cardiomyocytes. We aimed to identify mechanisms through which aggLDL, by its interaction with LRP1, produce CE accumulation and affects the insulin-induced intracellular signaling and GLUT4 trafficking in HL-1 cells. We demonstrated that LRP1 mediates the endocytosis of aggLDL and promotes CE accumulation in these cells. Moreover, aggLDL reduced the molecular association between IR and LRP1 and impaired insulin-induced intracellular signaling activation. Finally, aggLDL affected GLUT4 translocation to the plasma membrane and the 2-NBDG uptake in insulin-stimulated cells. We conclude that LRP1 is a key regulator of the insulin response, which can be altered by CE accumulation through LRP1-mediated aggLDL endocytosis. 10.3390/cells9010182
LRP1 facilitates hepatic glycogenesis by improving the insulin signaling pathway in HFD-fed mice. Animal models and experimental medicine BACKGROUND:LDL receptor-related protein-1 (LRP1) is a cell-surface receptor that functions in diverse physiological pathways. We previously demonstrated that hepatocyte-specific LRP1 deficiency (hLRP1KO) promotes diet-induced insulin resistance and increases hepatic gluconeogenesis in mice. However, it remains unclear whether LRP1 regulates hepatic glycogenesis. METHODS:Insulin signaling, glycogenic gene expression, and glycogen content were assessed in mice and HepG2 cells. The pcDNA 3.1 plasmid and adeno-associated virus serotype 8 vector (AAV8) were used to overexpress the truncated β-chain (β∆) of LRP1 both in vitro and in vivo. RESULTS:On a normal chow diet, hLRP1KO mice exhibited impaired insulin signaling and decreased glycogen content. Moreover, LRP1 expression in HepG2 cells was significantly repressed by palmitate in a dose- and time-dependent manner. Both LRP1 knockdown and palmitate treatment led to reduced phosphorylation of Akt and GSK3β, increased levels of phosphorylated glycogen synthase (GYS), and diminished glycogen synthesis in insulin-stimulated HepG2 cells, which was restored by exogenous expression of the β∆-chain. By contrast, AAV8-mediated hepatic β∆-chain overexpression significantly improved the insulin signaling pathway, thus activating glycogenesis and enhancing glycogen storage in the livers of high-fat diet (HFD)-fed mice. CONCLUSION:Our data revealed that LRP1, especially its β-chain, facilitates hepatic glycogenesis by improving the insulin signaling pathway, suggesting a new therapeutic strategy for hepatic insulin resistance-related diseases. 10.1002/ame2.12408
LRP1 is the cell-surface endocytosis receptor for vaspin in adipocytes. The FEBS journal Vaspin is a serine protease inhibitor that protects against adipose tissue inflammation and insulin resistance, two key drivers of adipocyte dysfunction and metabolic disorders in obesity. Inhibition of target proteases such as KLK7 has been shown to reduce adipose tissue inflammation in obesity, while vaspin binding to cell surface GRP78 has been linked to reduced obesity-induced ER stress and insulin resistance in the liver. However, the molecular mechanisms by which vaspin directly affects cellular processes in adipocytes remain unknown. Using fluorescently labeled vaspin, we found that vaspin is rapidly internalized by mouse and human adipocytes, but less efficiently by endothelial, kidney, liver, and neuronal cells. Internalization occurs by active, clathrin-mediated endocytosis, which is dependent on vaspin binding to the LRP1 receptor, rather than GRP78 as previously thought. This was demonstrated by competition experiments and RNAi-mediated knock-down in adipocytes and by rescuing vaspin internalization in LRP1-deficient Pea13 cells after transfection with a functional LRP1 minireceptor. Vaspin internalization is further increased in mature adipocytes after insulin-stimulated translocation of LRP1. Although vaspin has nanomolar affinity for LRP1 clusters II-IV, binding to cell surface heparan sulfates is required for efficient LRP1-mediated internalization. Native, but not cleaved vaspin, and also vaspin polymers are efficiently endocytosed, and ultimately targeted for lysosomal degradation. Our study provides mechanistic insight into the uptake and degradation of vaspin in adipocytes, thereby broadening our understanding of its functional repertoire. We hypothesize the vaspin-LRP1 axis to be an important mediator of vaspin effects not only in adipose tissue but also in other LRP1-expressing cells. 10.1111/febs.16991
Inhibiting DNA methylation alleviates cisplatin-induced hearing loss by decreasing oxidative stress-induced mitochondria-dependent apoptosis the LRP1-PI3K/AKT pathway. Acta pharmaceutica Sinica. B Cisplatin-related ototoxicity is a critical side effect of chemotherapy and can lead to irreversible hearing loss. This study aimed to assess the potential effect of the DNA methyltransferase (DNMT) inhibitor RG108 on cisplatin-induced ototoxicity. Immunohistochemistry, apoptosis assay, and auditory brainstem response (ABR) were employed to determine the impacts of RG108 on cisplatin-induced injury in murine hair cells (HCs) and spiral ganglion neurons (SGNs). Rhodamine 123 and TMRM were utilized for mitochondrial membrane potential (MMP) assessment. Reactive oxygen species (ROS) amounts were evaluated by Cellrox green and Mitosox-red probes. Mitochondrial respiratory function evaluation was performed by determining oxygen consumption rates (OCRs). The results showed that RG108 can markedly reduce cisplatin induced damage in HCs and SGNs, and alleviate apoptotic rate by protecting mitochondrial function through preventing ROS accumulation. Furthermore, RG108 upregulated BCL-2 and downregulated APAF1, BAX, and BAD in HEI-OC1 cells, and triggered the PI3K/AKT pathway. Decreased expression of low-density lipoprotein receptor-related protein 1 (LRP1) and high methylation of the LRP1 promoter were observed after cisplatin treatment. RG108 treatment can increase LRP1 expression and decrease LRP1 promoter methylation. In conclusion, RG108 might represent a new potential agent for preventing hearing loss induced by cisplatin activating the LRP1-PI3K/AKT pathway. 10.1016/j.apsb.2021.11.002