Polyphenols in wound healing: unlocking prospects with clinical applications.
Naunyn-Schmiedeberg's archives of pharmacology
Wound healing is a multifaceted, complex process that factors like aging, metabolic diseases, and infections may influence. The potentiality of polyphenols, natural compounds, has shown anti-inflammatory and antimicrobial properties in promoting wound healing and their potential applications in wound management. The studies reviewed indicate that polyphenols have multiple mechanisms that promote wound healing. This involves enhancing antioxidant defenses, reducing oxidative stress, modulating inflammatory responses, improving healing times, reducing infection rates, and enhancing tissue regeneration in clinical trials and in vivo and in vitro studies. Polyphenols have been proven to be effective in managing hard-to-heal wounds, especially in diabetic and elderly populations. Polyphenols have shown significant benefits in promoting angiogenesis and stimulating collagen synthesis. Polyphenol treatment has been demonstrated to have therapeutic effects in wound healing and chronic wound management. Their ability to regulate key healing processes makes them suitable for new wound care products and treatments. Future research should enhance formulations and delivery methods to optimize polyphenols' bioavailability and therapeutic efficacy in wound management approaches.
10.1007/s00210-024-03538-1
Extraction Methods, Properties, Functions, and Interactions with Other Nutrients of Lotus Procyanidins: A Review.
Journal of agricultural and food chemistry
Lotus procyanidins, natural polyphenolic compounds isolated from the lotus plant family, are widely recognized as potent antioxidants that scavenge free radicals in the human body and exhibit various pharmacological effects, such as anti-inflammatory, anticancer, antiobesity, and hypoglycemic. With promising applications in food and healthcare, lotus procyanidins have attracted extensive attention in recent years. This review provides a comprehensive summary of current research on lotus procyanidins, including extraction methods, properties, functions, and interactions with other nutrient components. Furthermore, this review offers an outlook on future research directions, providing ideas and references for the exploitation and utilization of lotus.
10.1021/acs.jafc.3c05305
Ethnobotanical, Phytochemical, Toxicological, and Pharmacological Properties of (L.) Lam.: A Comprehensive Review.
Pharmaceuticals (Basel, Switzerland)
(L.) Lam. (Rhamnaceae) is a plant species found across the Mediterranean area. This comprehensive overview aims to summarize the botanical description and ethnobotanical uses of and its phytochemical compounds derived with recent updates on its pharmacological and toxicological properties. The data were collected from electronic databases including the Web of Science, PubMed, ScienceDirect, Scopus, SpringerLink, and Google Scholars. It can be seen from the literature that is traditionally used to treat and prevent several diseases including diabetes, digestive problems, urinary tract problems, infectious diseases, cardiovascular disorders, neurological diseases, and dermal problems. The extracts of demonstrated several pharmacological properties in vitro and in vivo such as antidiabetic, anticancer, anti-oxidant, antimicrobials, anti-inflammatory, immunomodulatory, analgesic, anti-proliferative, anti-spasmodic, hepatoprotective, and nephroprotective effects. The phytochemical characterization of extracts revealed the presence of over 181 bioactive compounds including terpenoids, polyphenols, flavonoids, alkaloids, and fatty acids. Toxicity studies on showed that extracts from this plant are safe and free from toxicity. Thus, further research is needed to establish a possible relationship between traditional uses, plant chemistry, and pharmacological properties. Furthermore, is quite promising as a medicinal agent, so further clinical trials should be conducted to prove its efficacy.
10.3390/ph16040575
Lotus root extract inhibits skin damage through suppression of collagenase production in vitro.
Cytotechnology
Lotus root is a traditional food ingredient used primarily in Asia and is rich in polyphenols. To determine its potential use in antiphotoaging, polyphenols were extracted from lotus root with 50% ethanol, and the activity of matrix metalloproteinase (MMP) was measured in dermal cells treated with ultraviolet A (UVA). UVA exposure increased the gene expression of IL-1α, the mRNA levels of MMP-1, and hence, the levels of MMP-1 protein in HaCaT cells, whereas cells treated with lotus polyphenol (LP) normalized these values to the control. In the presence of LP at concentrations of 1 and 10 μg/mL, both the secretion of IL-1α and protein levels of MMP-1 in human keratinocyte cells significantly reduced. Similarly, in the LabCyte EPI-MODEL24, irradiation with UVA caused an increase in mRNA expression of IL-1α and MMP-1, which was prevented by adding LP to the cells. Our results with three different skin cells accordingly showed that LP may help maintain skin health through decreased levels of MMP-1 activity via its anti-inflammatory properties.
10.1007/s10616-022-00521-7
Lotus Root Polysaccharide-Phenol Complexes: Interaction, Structure, Antioxidant, and Anti-Inflammatory Activities.
Foods (Basel, Switzerland)
This research aimed to explore the interaction between lotus root polysaccharides (LRPs) and phenolic compounds, and to study the effects of phenolic binding on the structural and functional properties of LRPs. The influences of pH, temperature, and NaCl and phenol concentration on the binding ratio of gallic acid (GA)/epigallocatechin (EGC) to LRPs were evaluated. LRP-GA/EGC complexes with different phenolic binding amounts were then prepared and characterized via ultraviolet-visible (UV-Vis) and Fourier-transform infrared (FTIR) spectroscopy, and average molecular weight (MW) measurements. The results suggest that hydrogen bonds contributed to the binding of GA/EGC and LRPs. The phenolic binding led to significant changes in the structure and MW of LRPs. Moreover, antioxidant activity and the macrophage-stimulating effect of LRPs were improved after binding with GA/EGC, depending on the binding amount and type of polyphenol. Interestingly, LRP-GA/EGC complexes with polyphenol binding amounts of 105.4 mg/g and 50.71 mg/g, respectively, showed better stimulation effects on the anti-inflammatory cytokine IL10 secretion of macrophages when compared to LRPs. These results show the great potential of phenolic binding to be applied to improve the structure and functional activity of LRPs.
10.3390/foods12030577
Lotus ( Gaertn.) and Its Bioactive Phytocompounds: A Tribute to Cancer Prevention and Intervention.
Cancers
Cancer is one of the major leading causes of death worldwide. Accumulating evidence suggests a strong relationship between specific dietary habits and cancer development. In recent years, a food-based approach for cancer prevention and intervention has been gaining tremendous attention. Among diverse dietary and medicinal plants, lotus ( Gaertn., family Nymphaeaceae), also known as Indian lotus, sacred lotus or Chinese water lily, has the ability to effectively combat this disease. Various parts of have been utilized as a vegetable as well as an herbal medicine for more than 2000 years in the Asian continent. The rhizome and seeds of represent the main edible parts. Different parts of have been traditionally used to manage different disorders, such as fever, inflammation, insomnia, nervous disorders, epilepsy, hypertension, cardiovascular diseases, obesity, and hyperlipidemia. It is believed that numerous bioactive components, including alkaloids, polyphenols, terpenoids, steroids, and glycosides, are responsible for its various biological and pharmacological activities, such as antioxidant, anti-inflammatory, immune-modulatory, antiviral, hepatoprotective, cardioprotective, and hypoglycemic activities. Nevertheless, there is no comprehensive review with an exclusive focus on the anticancer attributes of diverse phytochemicals from different parts of . In this review, we have analyzed the effects of extracts, fractions and pure compounds on various organ-specific cancer cells and tumor models to understand the cancer-preventive and therapeutic potential and underlying cellular and molecular mechanisms of action of this interesting medicinal and dietary plant. In addition, the bioavailability, pharmacokinetics, and possible toxicity of -derived phytochemicals, as well as current limitations, challenges and future research directions, are also presented.
10.3390/cancers14030529