logo logo
Arabidopsis ABF3 and ABF4 Transcription Factors Act with the NF-YC Complex to Regulate SOC1 Expression and Mediate Drought-Accelerated Flowering. Hwang Keumbi,Susila Hendry,Nasim Zeeshan,Jung Ji-Yul,Ahn Ji Hoon Molecular plant The drought-escape response accelerates flowering in response to drought stress, allowing plants to adaptively shorten their life cycles. Abscisic acid (ABA) mediates plant responses to drought, but the role of ABA-responsive element (ABRE)-binding factors (ABFs) in the drought-escape response is poorly understood. Here, we show that Arabidopsis thaliana ABF3 and ABF4 regulate flowering in response to drought through transcriptional regulation of the floral integrator SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 (SOC1). The abf3 abf4 mutant displayed ABA-insensitive late flowering under long-day conditions. Ectopic expression of ABF3 or ABF4 in the vasculature, but not in the shoot apex, induced early flowering, whereas expression of ABF3 fused with the SRDX transcriptional repressor domain delayed flowering. We identified SOC1 as a direct downstream target of ABF3/4, and found that SOC1 mRNA levels were lower in abf3 abf4 than in wild-type plants. Moreover, induction of SOC1 by ABA was hampered in abf3 abf4 mutants. ABF3 and ABF4 were enriched at the -1028- to -657-bp region of the SOC1 promoter, which does not contain canonical ABF-ABRE-binding motifs but has the NF-Y binding element. We found that ABF3 and ABF4 interact with nuclear factor Y subunit C (NF-YC) 3/4/9 in vitro and in planta, and induction of SOC1 by ABA was hampered in nf-yc3 yc4 yc9 mutants. Interestingly, the abf3 abf4, nf-yc3 yc4 yc9, and soc1 mutants displayed a reduced drought-escape response. Taken together, these results suggest that ABF3 and ABF4 act with NF-YCs to promote flowering by inducing SOC1 transcription under drought conditions. This mechanism might contribute to adaptation by enabling plants to complete their life cycles under drought stress. 10.1016/j.molp.2019.01.002
Expression of AtNF-YB1 activates early flowering, showing potential in breeding hybrid rice. Physiologia plantarum The nuclear factor Y (NF-Y) has been shown to be involved in plant growth and development in response to various environmental signals. However, the integration of these mechanisms into breeding practices for new cultivars has not been extensively investigated. In this study, the Arabidopsis gene AtNF-YB1 was introduced into rice, including inbred Kasalath and the hybrids Jinfeng × Chenghui 727 and Jinfeng × Chuanhui 907. The obtained transgenic rice showed early flowering under both natural long day (NLD) and natural short day (NSD) conditions. For the inbred Kasalath, the transgenic lines clearly showed a shorter plant height and lower grain yield, with a decrease in spike length and grain number but more productive panicles. However, the hybrids with AtNF-YB1 had much smaller or even zero reduction in spike length and grain number and more productive panicles. Thus, maintained or even increased grain yields of the transgenic hybrids were recorded under the NLD conditions. Quantitative PCR analysis indicated that the rice flowering initiation pathways were early activated via the suppression of Ghd7 induction in the transgenic rice. RNA-Seq further demonstrated that three pathways related to plant photosynthesis were markedly upregulated in both Jinfeng B and the hybrid Jinfeng × Chuanhui 907 with AtNF-YB1 expression. Moreover, physiological experiments showed an upregulation of photosynthetic rates in the transgenic lines. Taken together, this study suggests that AtNF-YB1 expression in rice not only induces early flowering but also benefits photosynthesis, which might be used to develop hybrid varieties with early ripening. 10.1111/ppl.14538
Comprehensive Analyses of Four Genes from and Impacts on Flowering Time. Plants (Basel, Switzerland) Nuclear Factor Y (NF-Y) is a class of heterotrimeric transcription factors composed of three subunits: NF-A, NF-YB, and NF-YC. NF-YC family members play crucial roles in various developmental processes, particularly in the regulation of flowering time. However, their functions in petunia remain poorly understood. In this study, we isolated four genes from petunia and confirmed their subcellular localization in both the nucleus and cytoplasm. We analyzed the transcript abundance of all four genes and found that and were highly expressed in apical buds and leaves, with their transcript levels decreasing before flower bud differentiation. Silencing using VIGS resulted in a delayed flowering time and reduced chlorophyll content, while -silenced plants only exhibited a delayed flowering time. Furthermore, we detected the transcript abundance of flowering-related genes involved in different signaling pathways and found that , , , , and were regulated by both and . Additionally, the transcript abundance of , , and increased only in -silenced plants. Overall, these results provide evidence that and negatively regulate flowering time in petunia by modulating a series of flowering-related genes. 10.3390/plants13050742
TCP7 interacts with Nuclear Factor-Ys to promote flowering by directly regulating SOC1 in Arabidopsis. The Plant journal : for cell and molecular biology The success of plant reproduction depends on the timely transition from the vegetative phase to reproductive growth, a process often referred to as flowering. Although several plant-specific transcription factors belonging to the Teosinte Branched 1/Cycloidea/Proliferating Cell Factor (TCP) family are reportedly involved in the regulation of flowering in Arabidopsis, the molecular mechanisms, especially for Class I TCP members, are poorly understood. Here, we genetically identified Class I TCP7 as a positive regulator of flowering time. Protein interaction analysis indicated that TCP7 interacted with several Nuclear Factor-Ys (NF-Ys), known as the 'pioneer' transcription factors; CONSTANS (CO), a main photoperiod regulator of flowering. SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1) was differentially expressed in the dominant-negative mutant of TCP7 (lcu) and the loss-of-function mutant of Class I TCP members (septuple). Additionally, we obtained genetic and molecular evidence showing that TCP7 directly activates the flowering integrator gene, SOC1. Moreover, TCP7 synergistically activated SOC1 expression upon interacting with CO and NF-Ys in vivo. Collectively, our results provide compelling evidence that TCP7 synergistically interacts with NF-Ys to activate the transcriptional expression of the flowering integrator gene SOC1. 10.1111/tpj.15524
Structural insights into the multivalent binding of the Arabidopsis FLOWERING LOCUS T promoter by the CO-NF-Y master transcription factor complex. Lv Xinchen,Zeng Xiaolin,Hu Hongmiao,Chen Lixian,Zhang Fan,Liu Rui,Liu Yue,Zhou Xuelin,Wang Changshi,Wu Zhe,Kim Chanhong,He Yuehui,Du Jiamu The Plant cell Flowering plants sense various environmental and endogenous signals to trigger the floral transition and start the reproductive growth cycle. CONSTANS (CO) is a master transcription factor in the photoperiod floral pathway that integrates upstream signals and activates the florigen gene FLOWERING LOCUS T (FT). Here, we performed comprehensive structural and biochemical analyses to study the molecular mechanism underlying the regulation of FT by CO in Arabidopsis thaliana. We show that the four previously characterized cis-elements in the FT promoter proximal region, CORE1, CORE2, P1, and P2, are all direct CO binding sites. Structural analysis of CO in complex with NUCLEAR FACTOR-YB/YC (NF-YB/YC) and the CORE2 or CORE1 elements revealed the molecular basis for the specific recognition of the shared TGTG motifs. Biochemical analysis suggested that CO might form a homomultimeric assembly via its N-terminal B-Box domain and simultaneously occupy multiple cis-elements within the FT promoter. We suggest that this multivalent binding gives the CO-NF-Y complex high affinity and specificity for FT promoter binding. Overall, our data provide a detailed molecular model for the regulation of FT by the master transcription factor complex CO-NF-Y during the floral transition. 10.1093/plcell/koab016
Nuclear factor Y-A3b binds to the promoter and regulates flowering time in tomato. Horticulture research The control of flowering time is essential for reproductive success and has a major effect on seed and fruit yield and other important agricultural traits in crops. Nuclear factors Y (NF-Ys) are transcription factors that form heterotrimeric protein complexes to regulate gene expression required for diverse biological processes, including flowering time control in plants. However, to our knowledge, there has been no report on mutants of individual NF-YA subunits that promote early flowering phenotype in plants. In this study, we identified , encoding a member of the NF-Y transcription factor family, as a key gene regulating flowering time in tomato. Knockout of resulted in an early flowering phenotype in tomato, whereas overexpression of delayed flowering in transgenic tomato plants. NF-YA3b was demonstrated to form heterotrimeric protein complexes with multiple NF-YB/NF-YC heterodimers in yeast three-hybrid assays. Biochemical evidence indicated that NF-YA3b directly binds to the CCAAT -elements of the () promoter to suppress its gene expression. These findings uncovered a critical role of in regulating flowering time in tomato and could be applied to the management of flowering time in crops. 10.1093/hr/uhae088
Transcriptional Regulation of Female and Male Flower Bud Initiation and Development in Pecan (). Plants (Basel, Switzerland) Pecan () nuts are delicious and rich in unsaturated fatty acids, which are beneficial for human health. Their yield is closely related to several factors, such as the ratio of female and male flowers. We sampled and paraffin-sectioned female and male flower buds for one year and determined the stages of initial flower bud differentiation, floral primordium formation, and pistil and stamen primordium formation. We then performed transcriptome sequencing on these stages. Our data analysis suggested that FLOWERING LOCUS T (FT) and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 play a role in flower bud differentiation. was highly expressed in the early stage of female flower buds and may play a role in regulating flower bud differentiation and flowering time. Genes such as and were expressed during male flower bud development. belongs to the NF-Y transcription factor family and may initiate downstream events leading to floral transformation. promoted the transformation of leaf buds to flower buds. may have been involved in the establishment of floral meristem characteristics and the determination of floral organ characteristics. Our results lay a foundation for the control and subsequent regulation of female and male flower bud differentiation and yield improvement. 10.3390/plants12061378
The soybean GmNFY-B1 transcription factor positively regulates flowering in transgenic Arabidopsis. Molecular biology reports Nuclear Factor Y (NF-Y) gene family regulates numbers of flowering processes. Two independent transgenic Arabidopsis lines overexpressing (OX) GmNFY-B1 and GmNFYB1-GR (GmNFYB1 fused with the glucocorticoid receptor) were used to investigate the function of NFY-B1 in flowering. Furthermore, GmNFYB1-GR lines were chemically treated with dexamethasone (Dex, synthetic steroid hormone), cycloheximide (Cyc, an inhibitor of protein biosynthesis), and ethanol to examine their effects on different flowering related marker genes. Our results indicated that the transgenic lines produced longer hypocotyl lengths and had fewer numbers of rosette leaves compared to the wild-type and nf-yb1 mutant plants under both long and short-day (LD and SD) conditions. The qRT-PCR assays revealed that transcript levels of all flowering time regulating genes, i.e. SOC, FLC, FT, TSF, LFY, GI2, AGL, and FCA showed higher transcript abundance in lines OX GmNFYB1-GR. However, FT and GI genes showed higher transcript levels under Dex and Dex/Cyc treatments compared to Cyc and ethanol. Additionally, 24 differentially expressed genes were identified and verified through RNA-seq and RT-qPCR in GmNF-YB1-GR lines under Cyc and Dex/Cyc treatments from which 14 genes were up-regulated and 10 were down-regulated. These genes are involved in regulatory functions of circadian rhythm, regulation of flower development in photoperiodic, and GA pathways. The overexpression of GmNF-YB1 and GmNF-YB1-GR promote flowering through the higher expression of flowering-related genes. Further GmNF-YB1 and its attachment with the GR receptor can regulate its target genes under Dex/Cyc treatment and might act as flowering inducer under LD and SD conditions. 10.1007/s11033-021-06164-9
Involvement of PtCOL5-PtNF-YC4 in reproductive cone development and gibberellin signaling in Chinese pine. Plant science : an international journal of experimental plant biology It is well documented that the CO/NF-YB/NF-YC trimer (NF-Y-CO) binds and regulates the FT promoter. However, the FT/TFL1-like (FLOWERING LOCUS T/TERMINALFLOWER1-like) genes in gymnosperms are all flowering suppressors, and the regulation model of NF-Y in gymnosperms is different from that in angiosperms. Here, using Chinese pine (Pinus tabuliformis), we identified a CONSTANS-LIKE gene, PtCOL5, the expression of which was strongly induced during cones development and it functioned as a repressor of flowering. PtNF-YC4, which interacted with PtCOL5, was highly correlated with PtCOL5 during growth and development, has been demonstrated. Moreover, PtNF-YC4 and PtCOL5 can bind to PtTFL2 promoter, and their interaction can enhance PtTFL2 expression. Interestingly, we found PtNF-YC4 and PtCOL5 were involved in gibberellin signaling and their interaction was inhibited by PtDELLA protein, thus affecting PtTFL2 expression. Collectively, PtCOL5-PtNF-YC4 was involved in reproductive cone development and gibberellin signaling in Chinese pine. Our findings uncovered reproductive cone development and signal transduction mechanism of COL-NF-Y in gymnosperms. 10.1016/j.plantsci.2022.111383
Structural Insight into DNA Recognition by CCT/NF-YB/YC Complexes in Plant Photoperiodic Flowering. The Plant cell CONSTANS, CONSTANS-LIKE, and TIMING OF CAB EXPRESSION1 (CCT) domain-containing proteins are a large family unique to plants. They transcriptionally regulate photoperiodic flowering, circadian rhythms, vernalization, and other related processes. Through their CCT domains, CONSTANS and HEADING DATE1 (HD1) coordinate with the NUCLEAR FACTOR Y (NF-Y) B/C dimer to specifically target a conserved 'CCACA' motif within the promoters of their target genes. However, the mechanism underlying DNA recognition by the CCT domain remains unclear. Here we determined the crystal structures of the rice () NF-YB/YC dimer and the florigen gene ()-bound HD1/NF-YB/YC trimer with resolutions of 2.0 Å and 2.55 Å, respectively. The CCT domain of HD1 displays an elongated structure containing two α-helices and two loops, tethering to the NF-YB/YC dimer. Helix α2 and loop 2 are anchored into the minor groove of the 'CCACA' motif, which determines the specific base recognition. Our structures reveal the interaction mechanism among the CCT domain, NF-YB/YC dimer, and the target DNA. These results not only provide insight into the network between the CCT proteins and NF-Y subunits, but also offer potential approaches for improving productivity and global adaptability of crops by manipulating florigen expression. 10.1105/tpc.20.00067
Evolution of the PEBP gene family in Juglandaceae and their regulation of flowering pathway under the synergistic effect of JrCO and JrNF-Y proteins. International journal of biological macromolecules Phosphatidyl ethanolamine-binding protein (PEBP) has a conserved PEBP domain and plays an important role in regulating the flowering time and growth of angiosperms. To understand the evolution of PEBP family genes in walnut family and the mechanism of regulating flowering in photoperiod pathway, 53 genes with PEBP domain were identified from 5 Juglandaceae plants. The PEBP gene family of Juglandaceae can be divided into four subgroups, FT-like, TFL-like, MFT-like and PEBP-like subgroups. These genes all show very high homology for motifs and gene structure in Juglandaceae. In addition, the results of gene replication and collinearity analysis showed that the evolution of PEBP genes was mainly purified and selected, and segmental repetition was the main driving force for the evolution of PEBP gene family in walnut family. We found that PEBP gene family played an important role in female flower bud differentiation, and most JrPEBP genes were highly expressed in leaf bud and female flower bud by qRT-PCR. In Arabidopsis, AtCO can not only directly bind to CORE2, but also interact with NF-Y complex to positively regulate the expression of AtFT gene. In this study, we proved that JrCO (the lineal homologue of AtCO) could not directly regulate the expression of JrFT gene, but could enhance the binding of JrNF-YB4/6 protein to the promoter of JrFT gene by forming a heteropolymer with NF-YB4/NF-YB6. We also confirmed that JrNF-YC1/3/7, JrNF-YB4/6 and JrCO can form a trimer structure similar to AtNF-YB-YC-CO of Arabidopsis, and then bind to the promoter of JrFT gene to promote the transcription of JrFT gene. In a word, through identification and analysis of PEBP gene family in Juglandaceae and study on the mechanism of photoperiod pathway regulating flowering in walnut, we have found that nuclear transcription factor NF-YB/YC plays a more important role in the trimer structure of NF-YB-YC-CO in walnut species. Our study has further perfected the flowering regulatory network of walnut species. 10.1016/j.ijbiomac.2022.11.004
Genome-Wide Identification of the NF-Y Gene Family and Their Involvement in Bolting and Flowering in Flowering Chinese Cabbage. International journal of molecular sciences Flowering Chinese cabbage ( L. ssp. var. Tsen et Lee) is a widely consumed vegetable in southern China with significant economic value. Developing product organs in the flowering Chinese cabbage involves two key processes: bolting and flowering. Nuclear factor Y (NF-Y) is a heterotrimeric transcription factor known for its crucial role in various plant developmental processes. However, there is limited information available on the involvement of this gene family during flowering during Chinese cabbage development. In this study, 49 genes were identified and characterized along with their physicochemical properties, gene structure, chromosomal location, collinearity, and expression patterns. We also conducted subcellular localization, yeast two-hybrid, and transcriptional activity assays on selected genes. The findings of this study revealed enhanced expression levels of specific genes during the stalk development and flowering stages in flowering Chinese cabbage. Notably, BcNF-YA8, BcNF-YB14, BcNF-YB20, and BcNF-YC5 interacted with BcRGA1, a negative regulator of GA signaling, indicating their potential involvement in GA-mediated stalk development. This study provides valuable insights into the role of genes in flowering Chinese cabbage development and suggests that they are potential candidates for further investigating the key regulators of cabbage bolting and flowering. 10.3390/ijms241511898
Nuclear factor Y-mediated H3K27me3 demethylation of the SOC1 locus orchestrates flowering responses of Arabidopsis. Hou Xingliang,Zhou Jiannan,Liu Chang,Liu Lu,Shen Lisha,Yu Hao Nature communications Nuclear factor Y (NF-Y) is a conserved heterotrimeric transcription factor complex that binds to the CCAAT motifs within the promoter region of many genes. In plants, a large number of genes code for variants of each NF-YA, B or C subunit that can assemble in a combinatorial fashion. Here, we report the discovery of an Arabidopsis NF-Y complex that exerts epigenetic control over flowering time by integrating environmental and developmental signals. We show that NF-Y interacts with CONSTANS in the photoperiod pathway and DELLAs in the gibberellin pathway, to directly regulate the transcription of SOC1, a major floral pathway integrator. This NF-Y complex binds to a unique cis-element within the SOC1 promoter to modulate trimethylated H3K27 levels, partly through a H3K27 demethylase REF6. Our findings establish NF-Y complexes as critical mediators of epigenetic marks that regulate the response to environmental or intrinsic signals in plants. 10.1038/ncomms5601
Tissue-specific expression patterns of Arabidopsis NF-Y transcription factors suggest potential for extensive combinatorial complexity. Siefers Nicholas,Dang Kristen K,Kumimoto Roderick W,Bynum William Edwards,Tayrose Gregory,Holt Ben F Plant physiology All aspects of plant and animal development are controlled by complex networks of transcription factors. Transcription factors are essential for converting signaling inputs, such as changes in daylength, into complex gene regulatory outputs. While some transcription factors control gene expression by binding to cis-regulatory elements as individual subunits, others function in a combinatorial fashion. How individual subunits of combinatorial transcription factors are spatially and temporally deployed (e.g. expression-level, posttranslational modifications and subcellular localization) has profound effects on their control of gene expression. In the model plant Arabidopsis (Arabidopsis thaliana), we have identified 36 Nuclear Factor Y (NF-Y) transcription factor subunits (10 NF-YA, 13 NF-YB, and 13 NF-YC subunits) that can theoretically combine to form 1,690 unique complexes. Individual plant subunits have functions in flowering time, embryo maturation, and meristem development, but how they combine to control these processes is unknown. To assist in the process of defining unique NF-Y complexes, we have created promoter:beta-glucuronidase fusion lines for all 36 Arabidopsis genes. Here, we show NF-Y expression patterns inferred from these promoter:beta-glucuronidase lines for roots, light- versus dark-grown seedlings, rosettes, and flowers. Additionally, we review the phylogenetic relationships and examine protein alignments for each NF-Y subunit family. The results are discussed with a special emphasis on potential roles for NF-Y subunits in photoperiod-controlled flowering time. 10.1104/pp.108.130591
Homologous NF-YC2 subunit from Arabidopsis and tobacco is activated by photooxidative stress and induces flowering. International journal of molecular sciences The transcription factor NF-Y consists of the three subunits A, B and C, which are encoded in Arabidopsis in large gene families. The multiplicity of the genes implies that NF-Y may act in diverse combinations of each subunit for the transcriptional control. We aimed to assign a function in stress response and plant development to NF-YC subunits by analyzing the expression of NF-Y genes and exploitation of nf-y mutants. Among the subunit family, NF-YC2 showed the strongest inducibility towards oxidative stress, e.g. photodynamic, light, oxidative, heat and drought stress. A tobacco NF-YC homologous gene was found to be inducible by photooxidative stress generated by an accumulation of the tetrapyrrole metabolite, coproporphyrin. Despite the stress induction, an Arabidopsis nf-yc2 mutant and NF-YC2 overexpressors did not show phenotypical differences compared to wild-type seedlings in response to photooxidative stress. This can be explained by the compensatory potential of other members of the NF-YC family. However, NF-YC2 overexpression leads to an early flowering phenotype that is correlated with increased FLOWERING LOCUS T-transcript levels. It is proposed that NF-YC2 functions in floral induction and is a candidate gene among the NF-Y family for the transcriptional activation upon oxidative stress. 10.3390/ijms13033458
NF-YC3, NF-YC4 and NF-YC9 are required for CONSTANS-mediated, photoperiod-dependent flowering in Arabidopsis thaliana. Kumimoto Roderick W,Zhang Yan,Siefers Nicholas,Holt Ben F The Plant journal : for cell and molecular biology NF-Y transcription factors represent a complex of three proteins called NF-YA, NF-YB and NF-YC. Each protein is highly conserved in eukaryotes, and in the plant lineage has undergone numerous rounds of duplication. Individual NF-Y are emerging as important regulators of several essential plant processes, including embryogenesis, drought resistance, maintenance of meristems in nitrogen-fixing nodules and photoperiod-dependent flowering time. Building on the recent finding that NF-YB2 and NF-YB3 have overlapping functionality in Arabidopsis photoperiod-dependent flowering (Kumimoto et al., 2008), we have identified three NF-YC (NF-YC3, NF-YC4, and NF-YC9) that are also required for flowering, and physically interact in vivo with both NF-YB2 and NF-YB3. Furthermore, NF-YC3, NF-YC4 and NF-YC9 can physically interact with full-length CONSTANS (CO), and are genetically required for CO-mediated floral promotion. Collectively, the present data greatly strengthens and extends the argument that CO utilizes NF-Y transcription factor complexes for the activation of FLOWERING LOCUS T (FT) during photoperiod-dependent floral initiation. 10.1111/j.1365-313X.2010.04247.x
The Nuclear Factor Y subunits NF-YB2 and NF-YB3 play additive roles in the promotion of flowering by inductive long-day photoperiods in Arabidopsis. Kumimoto Roderick W,Adam Luc,Hymus Graham J,Repetti Peter P,Reuber T Lynne,Marion Colleen M,Hempel Frederick D,Ratcliffe Oliver J Planta Accumulating evidence supports a role for members of the plant Nuclear Factor Y (NF-Y) family of CCAAT-box binding transcription factors in the regulation of flowering time. In this study we have used a genetic approach to show that the homologous proteins NF-YB3 and NF-YB2 have comparable activities and play additive roles in the promotion of flowering, specifically under inductive photoperiodic conditions. We demonstrate that NF-YB2 and NF-YB3 are both essential for the normal induction of flowering by long-days and act through regulation of the expression of FLOWERING LOCUS T (FT). Using an ELISA-based in-vitro assay, we provide a novel demonstration that plant NF-YB subunits are capable of directly binding to a CCAAT-box containing region of the FLOWERING LOCUS T promoter as part of an NF-Y trimer in combination with the yeast HAP2 and HAP5 subunits. These results support an emerging model in which NF-Y complexes provide a component of the DNA target specificity for transcriptional regulators such as CONSTANS. 10.1007/s00425-008-0773-6