logo logo
Functional analysis of the heterotrimeric NF-Y transcription factor complex in cassava disease resistance. He Xinyi,Liu Guoyin,Li Bing,Xie Yanwei,Wei Yunxie,Shang Sang,Tian Libo,Shi Haitao Annals of botany 10.1093/aob/mcz148
Two different viral proteins suppress NUCLEAR FACTOR-YC-mediated antiviral immunity during infection in rice. Plant physiology Plant viruses have multiple strategies to counter and evade the host's antiviral immune response. However, limited research has been conducted on the antiviral defense mechanisms commonly targeted by distinct types of plant viruses. In this study, we discovered that NUCLEAR FACTOR-YC (NF-YC) and NUCLEAR FACTOR-YA (NF-YA), 2 essential components of the NF-Y complex, were commonly targeted by viral proteins encoded by 2 different rice (Oryza sativa L.) viruses, rice stripe virus (RSV, Tenuivirus) and southern rice black streaked dwarf virus (SRBSDV, Fijivirus). In vitro and in vivo experiments showed that OsNF-YCs associate with OsNF-YAs and inhibit their transcriptional activation activity, resulting in the suppression of OsNF-YA-mediated plant susceptibility to rice viruses. Different viral proteins RSV P2 and SRBSDV SP8 directly disrupted the association of OsNF-YCs with OsNF-YAs, thereby suppressing the antiviral defense mediated by OsNF-YCs. These findings suggest an approach for conferring broad-spectrum disease resistance in rice and reveal a common mechanism employed by viral proteins to evade the host's antiviral defense by hindering the antiviral capabilities of OsNF-YCs. 10.1093/plphys/kiae070
GmNF-YC4-2 Increases Protein, Exhibits Broad Disease Resistance and Expedites Maturity in Soybean. International journal of molecular sciences The NF-Y gene family is a highly conserved set of transcription factors. The functional transcription factor complex is made up of a trimer between NF-YA, NF-YB, and NF-YC proteins. While mammals typically have one gene for each subunit, plants often have multigene families for each subunit which contributes to a wide variety of combinations and functions. Soybean plants with an overexpression of a particular NF-YC isoform (Glyma.04g196200) in soybean cultivar Williams 82, had a lower amount of starch in its leaves, a higher amount of protein in its seeds, and increased broad disease resistance for bacterial, viral, and fungal infections in the field, similar to the effects of overexpression of its isoform (Glyma.06g169600). Interestingly, (overexpression) plants also filled pods and senesced earlier, a novel trait not found in plants. No yield difference was observed in compared with the wild-type control. Sequence alignment of GmNF-YC4-2, GmNF-YC4-1 and AtNF-YC1 indicated that faster maturation may be a result of minor sequence differences in the terminal ends of the protein compared to the closely related isoforms. 10.3390/ijms22073586
NF-YA transcription factors suppress jasmonic acid-mediated antiviral defense and facilitate viral infection in rice. PLoS pathogens NF-Y transcription factors are known to play many diverse roles in the development and physiological responses of plants but little is known about their role in plant defense. Here, we demonstrate the negative roles of rice NF-YA family genes in antiviral defense against two different plant viruses, Rice stripe virus (RSV, Tenuivirus) and Southern rice black-streaked dwarf virus (SRBSDV, Fijivirus). RSV and SRBSDV both induced the expression of OsNF-YA family genes. Overexpression of OsNF-YAs enhanced rice susceptibility to virus infection, while OsNF-YAs RNAi mutants were more resistant. Transcriptome sequencing showed that the expression of jasmonic acid (JA)-related genes was significantly decreased in plants overexpressing OsNF-YA when they were infected by viruses. qRT-PCR and JA sensitivity assays confirmed that OsNF-YAs play negative roles in regulating the JA pathway. Further experiments showed that OsNF-YAs physically interact with JA signaling transcription factors OsMYC2/3 and interfere with JA signaling by dissociating the OsMYC2/3-OsMED25 complex, which inhibits the transcriptional activation activity of OsMYC2/3. Together, our results reveal that OsNF-YAs broadly inhibit plant antiviral defense by repressing JA signaling pathways, and provide new insight into how OsNF-YAs are directly associated with the JA pathway. 10.1371/journal.ppat.1010548
NF-YC15 transcription factor activates ethylene biosynthesis and improves cassava disease resistance. Plant biotechnology journal The nuclear factor Y (NF-Y) transcription factors play important roles in plant development and physiological responses. However, the relationship between NF-Y, plant hormone and plant stress resistance in tropical crops remains unclear. In this study, we identified MeNF-YC15 gene in the NF-Y family that significantly responded to Xanthomonas axonopodis pv. manihotis (Xam) treatment. Using MeNF-YC15-silenced and -overexpressed cassava plants, we elucidated that MeNF-YC15 positively regulated disease resistance to cassava bacterial blight (CBB). Notably, we illustrated MeNF-YC15 downstream genes and revealed the direct genetic relationship between MeNF-YC15 and 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase (MeACO1)-ethylene module in disease resistance, as evidenced by the rescued disease susceptibility of MeNF-YC15 silenced cassava plants with ethylene treatment or overexpressing MeACO1. In addition, the physical interaction between 2C-type protein phosphatase 1 (MePP2C1) and MeNF-YC15 inhibited the transcriptional activation of MeACO1 by MeNF-YC15. In summary, MePP2C1-MeNF-YC15 interaction modulates ethylene biosynthesis and cassava disease resistance, providing gene network for cassava genetic improvement. 10.1111/pbi.14355
Functional analysis of the heterotrimeric NF-Y transcription factor complex in cassava disease resistance. Annals of botany BACKGROUND AND AIMS:The nuclear factor Y (NF-Y) transcription factor complex is important in plant growth, development and stress response. Information regarding this transcription factor complex is limited in cassava (Manihot esculenta). In this study, 15 MeNF-YAs, 21 MeNF-YBs and 15 MeNF-YCs were comprehensively characterized during plant defence. METHODS:Gene expression in MeNF-Ys was examined during interaction with the bacterial pathogen Xanthomonas axonopodis pv. manihotis (Xam). The yeast two-hybrid system was employed to investigate protein-protein interactions in the heterotrimeric NF-Y transcription factor complex. The in vivo roles of MeNF-Ys were revealed by virus-induced gene silencing (VIGS) in cassava. KEY RESULTS:The regulation of MeNF-Ys in response to Xam indicated their possible roles in response to cassava bacterial blight. Protein-protein interaction assays identified the heterotrimeric NF-Y transcription factor complex (MeNF-YA1/3, MeNF-YB11/16 and MeNF-YC11/12). Moreover, the members of the heterotrimeric NF-Y transcription factor complex were located in the cell nucleus and conferred transcriptional activation activity to the CCAAT motif. Notably, the heterotrimeric NF-Y transcription factor complex positively regulated plant disease resistance to Xam, confirmed by a disease phenotype in overexpressing plants in Nicotiana benthamiana and VIGS in cassava. Consistently, the heterotrimeric NF-Y transcription factor complex positively regulated the expression of pathogenesis-related genes (MePRs). CONCLUSIONS:The NF-Y transcription factor complex (MeNF-YA1/3, MeNF-YB11/16 and MeNF-YC11/12) characterized here was shown to play a role in transcriptional activation of MePR promoters, contributing to the plant defence response in cassava. 10.1093/aob/mcz115
NF-YB family transcription factors in : Structure, phylogeny, and expression analysis in biotic and abiotic stresses. Frontiers in microbiology Nuclear factor-Y (NF-Y) transcription factors (TFs) are conserved heterotrimeric complexes present and widespread across eukaryotes. Three main subunits make up the structural and functional aspect of the NF-Y TFs: NF-YA, NF-YB and NF-YC, which bind to the conserved CCAAT- box of the promoter region of specific genes, while also interacting with each other, thereby forming myriad combinations. The NF-YBs are expressed differentially in various tissues and plant development stages, likely impacting many of the cellular processes constitutively and under stress conditions. In this study, ten members of NF-YB family from were identified and expression profiles were mined from microarray data under different biotic and abiotic conditions, revealing key insights into the involvement of this class of proteins in the cellular and biological processes in . Analysis of -acting regulatory elements (CAREs) indicated the presence of abiotic and biotic stress-related transcription factor binding sites (TFBs), shedding light on the multifaceted roles of these TFs. Microarray data analysis inferred distinct patterns of expression in various tissues under differing treatments such as drought, cold and heat stress as well as bacterial, fungal, and viral stress, indicating their likelihood of having an expansive range of regulatory functions under native and stressed conditions; while quantitative real-time PCR (qRT-PCR) based expression analysis revealed that these TFs get real-time-modulated in a stress dependent manner. This study, overall, provides an understanding of the AtNF-YB family of TFs in their regulation and participation in various morphogenetic and defense- related pathways and can provide insights for development of transgenic plants for trait dependent studies. 10.3389/fmicb.2022.1067427
Identification and expression analysis of maize subunit genes. PeerJ encode subunits of the nuclear factor-Y (NF-Y) gene family. s represent a kind of conservative transcription factor in plants and are involved in plant growth and development, as well as resistance to biotic and abiotic stress. In this study, 16 maize () subunit genes were identified using bioinformatics methods, and they were divided into three categories by a phylogenetic analysis. A conserved domain analysis showed that most contained a CCAAT-binding transcription factor (CBFB) _NF-YA domain. Maize subunit genes showed very obvious tissue expression characteristics. The expression level of the subunit genes significantly changed under different abiotic stresses, including infection and salicylic acid (SA) or jasmonic acid (JA) treatments. After inoculation with and , the lesion areas of and were significantly larger than that of B73, indicating that and positively regulated maize disease resistance. and may regulated maize disease resistance by affecting the transcription levels of s. Thus, subunit genes played important roles in promoting maize growth and development and resistance to stress. The results laid a foundation for clarifying the functions and regulatory mechanisms of subunit genes in maize. 10.7717/peerj.14306
Expression patterns of the poplar gene family in response to and hormone treatment and the role of in disease resistance. Frontiers in bioengineering and biotechnology Plant nuclear factor-Y (NF-Y) transcription factors (TFs) are key regulators of growth and stress resistance. However, the role of NF-Y TFs in poplar in response to biotic stress is still unclear. In this study, we cloned 26 encoding genes in the hybrid poplar × , including 12 s, six s, and eight s. Their physical and chemical parameters, conserved domains, and phylogeny were subsequently analyzed. The protein-protein interaction (PPI) network showed that the three PdbNF-Y subunits may interact with NF-Y proteins belonging to two other subfamilies and other TFs. Tissue expression analysis revealed that s exhibited three distinct expression patterns in three tissues. Cis-elements related to stress-responsiveness were found in the promoters of s, and most s were shown to be differentially expressed under and hormone treatments. Compared with the and subfamilies, more s were significantly induced under the two treatments. Moreover, loss- and gain-of-function analyses showed that plays a positive role in poplar resistance to . Additionally, RT‒qPCR analyses showed that overexpression and silencing altered the transcript levels of JA-related genes, including , , , , , , and , suggesting that -mediated disease resistance is related to activation of the JA pathway. Our findings will contribute to functional analysis of genes in woody plants, especially their roles in response to biotic stress. 10.3389/fbioe.2022.956271
Correction to: Functional analysis of the heterotrimeric NF-Y transcription factor complex in cassava disease resistance. Annals of botany 10.1093/aob/mcae134