logo logo
Natural approach of using nisin and its nanoform as food bio-preservatives against methicillin resistant Staphylococcus aureus and E.coli O157:H7 in yoghurt. BMC veterinary research BACKGROUND:Natural antimicrobial agents such as nisin were used to control the growth of foodborne pathogens in dairy products. The current study aimed to examine the inhibitory effect of pure nisin and nisin nanoparticles (nisin NPs) against methicillin resistant Staphylococcus aureus (MRSA) and E.coli O157:H7 during the manufacturing and storage of yoghurt. Nisin NPs were prepared using new, natural, and safe nano-precipitation method by acetic acid. The prepared NPs were characterized using zeta-sizer and transmission electron microscopy (TEM). In addition, the cytotoxicity of nisin NPs on vero cells was assessed using the 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The minimum inhibitory concentrations (MICs) of nisin and its nanoparticles were determined using agar well-diffusion method. Further, fresh buffalo's milk was inoculated with MRSA or E.coli O157:H7 (1 × 10 CFU/ml) with the addition of either nisin or nisin NPs, and then the inoculated milk was used for yoghurt making. The organoleptic properties, pH and bacterial load of the obtained yoghurt were evaluated during storage in comparison to control group. RESULTS:The obtained results showed a strong antibacterial activity of nisin NPs (0.125 mg/mL) against MRSA and E.coli O157:H7 in comparison with control and pure nisin groups. Notably, complete eradication of MRSA and E.coli O157:H7 was observed in yoghurt formulated with nisin NPs after 24 h and 5th day of storage, respectively. The shelf life of yoghurt inoculated with nisin nanoparticles was extended than those manufactured without addition of such nanoparticles. CONCLUSIONS:Overall, the present study indicated that the addition of nisin NPs during processing of yoghurt could be a useful tool for food preservation against MRSA and E.coli O157:H7 in dairy industry. 10.1186/s12917-024-03985-1
Functional properties of chitosan derivatives obtained through Maillard reaction: A novel promising food preservative. Hafsa Jawhar,Smach Mohammed Ali,Mrid Reda Ben,Sobeh Mansour,Majdoub Hatem,Yasri Abdelaziz Food chemistry This review provides an insight about the functional properties of chitosan obtained through Maillard reaction to enhance the shelf life and food quality. Maillard reaction is a promising and safe method to obtain commercial water-soluble chitosan's through Schiff base linkage and Amadori or Heyns rearrangement. Likewise, chitosan derivatives exert an enhanced antimicrobial, antioxidant, and emulsifying properties due to the development of Maillard reaction products (MRPs) like reductones and melanoidins. Additionally, the application of chitosan-MRPs effectively inhibited the microbial spoilage, reduced lipid oxidative, and extended the shelf life and the quality of fresh food products. Therefore, understand the potential of chitosan-MRPs derivatives as a functional biomaterial to improve the postharvest quality and extending the shelf life of food products will scale up its application as a food preservative. 10.1016/j.foodchem.2021.129072
Utilizing functional genomics in Saccharomyces cerevisiae to characterize food preservative compounds: A pilot study. Journal of food science Chemical preservatives are ubiquitously used to suppress the growth of or kill microorganisms across numerous industries, including the food industry. Utilizing yeast functional genomic techniques, genes and their functions can be observed at a genomic scale to elucidate how environmental stressors (e.g., chemical preservatives) impact microbial survival. These types of chemical genomics approaches can reveal genetic mutations that result in preservative resistance or sensitivity, assist in identification of preservative mechanism of action, and can be used to compare different preservatives for rational design of preservative mixtures. In this proof-of-concept study, we performed deletion and high-copy genetic expression screens to identify mutants that confer drug resistance to sodium benzoate, potassium sorbate, rosemary extract, and Natamax. By observing overlapping mutant genes between genetic screens, we were able to identify functional overlap between chemical preservatives and begin to explain mechanisms of action for these compounds. 10.1111/1750-3841.16906
Review of antimicrobial and antioxidative activities of chitosans in food. Journal of food protection Interest in chitosan, a biodegradable, nontoxic, non-antigenic, and biocompatible biopolymer isolated from shellfish, arises from the fact that chitosans are reported to exhibit numerous health-related beneficial effects, including strong antimicrobial and antioxidative activities in foods. The extraordinary interest in the chemistry and application in agriculture, horticulture, environmental science, industry, microbiology, and medicine is attested by about 17,000 citations on this subject in the Scopus database. A special need exists to develop a better understanding of the role of chitosans in ameliorating foodborne illness. To contribute to this effort, this overview surveys and interprets our present knowledge of the chemistry and antimicrobial activities of chitosan in solution, as powders, and in edible films and coating against foodborne pathogens, spoilage bacteria, and pathogenic viruses and fungi in several food categories. These include produce, fruit juices, eggs and dairy, cereal, meat, and seafood products. Also covered are antimicrobial activities of chemically modified and nanochitosans, therapeutic properties, and possible mechanisms of the antimicrobial, antioxidative, and metal chelating effects. Further research is suggested in each of these categories. The widely scattered data on the multifaceted aspects of chitosan microbiology, summarized in the text and in 10 tables and 8 representative figures, suggest that low-molecular-weight chitosans at a pH below 6.0 presents optimal conditions for achieving desirable antimicrobial and antioxidative-preservative effects in liquid and solid foods. We are very hopeful that the described findings will be a valuable record and resource for further progress to improve microbial food safety and food quality. 10.4315/0362-028x-73.9.1737
Preservative agents in foods. Mode of action and microbial resistance mechanisms. Brul S,Coote P International journal of food microbiology Preservative agents are required to ensure that manufactured foods remain safe and unspoiled. In this review, we will discuss the mode of action of both chemical and biological (nature-derived) preservatives and the stress response mechanisms induced by these compounds in microorganisms of concern to the food industry. We will discuss the challenges that food manufacturers face with respect to the assurance of food safety and the prevention of spoilage. Following this, chemical preservatives will be discussed, in particular, weak organic acids such as sorbic and benzoic acid which are widely used in preservation. Furthermore. the mechanisms of microbial inactivation with hydrogen peroxide mediated systems and chelators such as citric acid and EDTA and their potential use in preservation will be covered. We will then address the potential of naturally occurring "preservatives". Of the antimicrobial compounds present in nature, first to be discussed will be the nonproteinaceous compounds often present in herbs and spices and we will speculate on the stress response(s) that microorganisms may elicit to these natural compounds. Next to be addressed will be compounds that attack cell walls and membranes, for example, peptides, proteins and lytic enzymes. In discussing the resistance mechanisms against membrane and wall perturbation, the extensive knowledge of stress responses against osmotic stress and temperature stress will be refered to. Finally, in the concluding paragraphs, options for combination preservation systems are evaluated.
Antibacterial, antiviral, and antifungal properties of wines and winery byproducts in relation to their flavonoid content. Friedman Mendel Journal of agricultural and food chemistry Grapes produce organic compounds that may be involved in the defense of the plants against invading phytopathogens. These metabolites include numerous phenolic compounds that are also active against human pathogens. Grapes are used to produce a variety of wines, grape juices, and raisins. Grape pomace, seeds, and skins, the remains of the grapes that are a byproduct of winemaking, also contain numerous bioactive compounds that differ from those found in grapes and wines. This overview surveys and interprets our present knowledge of the activities of wines and winery byproducts and some of their bioactive components against foodborne (Bacillus cereus, Campylobacter jejuni, Escherichia coli, Listeria monocytogenes, Salmonella enterica, Staphylococcus aureus, Yersinia enterocolitica, Vibrio cholerae, Vibrio vulnificus), medical (Helicobacter pylori, Klebsiella pneumoniae), and oral pathogenic bacteria, viruses (adeno, cytomegalo, hepatitis, noro, rota), fungi (Candida albicans, Botrytis cinerea), parasites (Eimeria tenella, Trichomonas vaginalis), and microbial toxins (ochratoxin A, Shiga toxin) in culture, in vivo, and in/on food (beef, chicken, frankfurters, hot dogs, lettuce, oysters, peppers, pork, sausages, soup, spinach) in relation to composition and sensory properties. Also covered are antimicrobial wine marinades, antioxidative and immunostimulating aspects, and adverse effects associated with wine consumption. The collated information and suggested research needs might facilitate and guide further studies needed to optimize the use of wines and byproducts to help improve microbial food safety and prevent or treat animal and human infections. 10.1021/jf501266s
Recent advances in the biotechnological production of microbial poly(ɛ-L-lysine) and understanding of its biosynthetic mechanism. Xu Zhaoxian,Xu Zheng,Feng Xiaohai,Xu Delei,Liang Jinfeng,Xu Hong Applied microbiology and biotechnology Poly(ɛ-L-lysine) (ɛ-PL) is an unusual biopolymer composed of L-lysine connected between α-carboxyl and ɛ-amino groups. It has been used as a preservative in food and cosmetics industries, drug carrier in medicines, and gene carrier in gene therapy. Modern biotechnology has significantly improved the synthetic efficiency of this novel homopoly(amino acid) on an industrial scale and has expanded its industrial applications. In the latest years, studies have focused on the biotechnological production and understanding the biosynthetic mechanism of microbial ɛ-PL. Herein, this review focuses on the current trends and future perspectives of microbial ɛ-PL. Information on the screening of ɛ-PL-producing strains, fermentative production of ɛ-PL, breeding of high-ɛ-PL-producing strains, genomic data of ɛ-PL-producing strains, biosynthetic mechanism of microbial ɛ-PL, and the control of molecular weight of microbial ɛ-PL is included. This review will contribute to the development of this novel homopoly(amino acid) and serve as a basis of studies on other biopolymers. 10.1007/s00253-016-7677-3
Edible coatings for fresh-cut fruits. Olivas G I,Barbosa-Cánovas G V Critical reviews in food science and nutrition The production of fresh-cut fruits is increasingly becoming an important task as consumers are more aware of the importance of healthy eating habits, and have less time for food preparation. A fresh-cut fruit is a fruit that has been physically altered from its original state (trimmed, peeled, washed and/or cut), but remains in a fresh state. Unfortunately since fruits have living tissue, they undergo enzymatic browning, texture decay, microbial contamination, and undesirable volatile production, highly reducing their shelf life if they are in any way wounded. Edible coatings can be used to help in the preservation of minimally processed fruits, providing a partial barrier to moisture, oxygen and carbon dioxide, improving mechanical handling properties, carrying additives, avoiding volatiles loss, and even contributing to the production of aroma volatiles. 10.1080/10408690490911837
Bacteriocinogenic LAB Strains for Fermented Meat Preservation: Perspectives, Challenges, and Limitations. Favaro Lorenzo,Todorov Svetoslav Dimitrov Probiotics and antimicrobial proteins Over the last decades, much research has focused on lactic acid bacteria (LAB) bacteriocins because of their potential as biopreservatives and their action against the growth of spoilage microbes. Meat and fermented meat products are prone to microbial contamination, causing health risks, as well as economic losses in the meat industry. The use of bacteriocin-producing LAB starter or protective cultures is suitable for fermented meats. However, although bacteriocins can be produced during meat processing, their levels are usually much lower than those achieved during in vitro fermentations under optimal environmental conditions. Thus, the direct addition of a bacteriocin food additive would be desirable. Moreover, safety and technological characteristics of the bacteriocinogenic LAB must be considered before their widespread applications. This review describes the perspectives and challenges toward the complete disclosure of new bacteriocins as effective preservatives in the production of safe and "healthy" fermented meat products. 10.1007/s12602-017-9330-6
Characterization of simplified nonapeptides with broad-spectrum antimicrobial activities as potential food preservatives, and their antibacterial mechanism. Food & function Antimicrobial peptides (AMPs) have attracted attention in the field of food preservatives due to their favorable biosafety and potential antimicrobial activity. However, high synthetic cost, systemic toxicity, a narrow antimicrobial spectrum, and poor antimicrobial activity become the main bottlenecks for their practical applications. To address these questions, a set of derived nonapeptides were designed based on a previously discovered ultra-short peptide sequence template (RXRXRXRXL-NH) and screened to identify an optimal peptide-based food preservative with excellent antimicrobial properties. Among these nonapeptides, the designed peptides 3IW (RIRIRIRWL-NH) and W2IW (RWRIRIRWL-NH) presented a membrane-disruptive and reactive oxygen species (ROS) accumulation mechanism to execute potent and rapid broad-spectrum antimicrobial activity without observed cytotoxicity. Moreover, they exhibited favorable antimicrobial stability regardless of high ionic strength, heat, and excessive acid-base conditions, retaining potent antimicrobial effects for chicken meat preservation. Collectively, their ultra-short sequence length and potent broad-spectrum antimicrobial capacity may be beneficial for the further development of green and safe peptide-based food preservatives. 10.1039/d2fo03861g
Bacteriocins from lactic acid bacteria and their potential in the preservation of fruit products. Barbosa Ana Andréa Teixeira,Mantovani Hilário Cuquetto,Jain Sona Critical reviews in biotechnology Bacteriocins produced by lactic acid bacteria (LAB) are well-recognized for their potential as natural food preservatives. These antimicrobial peptides usually do not change the sensorial properties of food products and can be used in combination with traditional preservation methods to ensure microbial stability. In recent years, fruit products are increasingly being associated with food-borne pathogens and spoilage microorganisms, and bacteriocins are important candidates to preserve these products. Bacteriocins have been extensively studied to preserve foods of animal origin. However, little information is available for their use in vegetable products, especially in minimally processed ready-to-eat fruits. Although, many bacteriocins possess useful characteristics that can be used to preserve fruit products, to date, only nisin, enterocin AS-48, bovicin HC5, enterocin 416K1, pediocin and bificin C6165 have been tested for their activity against spoilage and pathogenic microorganisms in these products. Among these, only nisin and pediocin are approved to be commercially used as food additives, and their use in fruit products is still limited to certain countries. Considering the increasing demand for fresh-tasting fruit products and concern for public safety, the study of other bacteriocins with biochemical characteristics that make them candidates for the preservation of these products are of great interest. Efforts for their approval as food additives are also important. In this review, we discuss why the study of bacteriocins as an alternative method to preserve fruit products is important; we detail the biotechnological approaches for the use of bacteriocins in fruit products; and describe some bacteriocins that have been tested and have potential to be tested for the preservation of fruit products. 10.1080/07388551.2016.1262323
Bioactive Peptides: A Promising Alternative to Chemical Preservatives for Food Preservation. Zhang Shuhui,Luo Lu,Sun Xueyan,Ma Aimin Journal of agricultural and food chemistry Bioactive peptides used for food preservation can prolong the shelf life through bacteriostasis and antioxidation. On the one hand, bioactive peptides can inhibit lipid oxidation by scavenging free radicals, interacting with metal ions, and inhibiting lipid peroxidation. On the other hand, bioactive peptides can fundamentally inhibit the growth and reproduction of microorganisms by destroying their cell membranes or targeting intracellular components. Besides, bioactive peptides are biocompatible and biodegradable . Therefore, they are regarded as a promising alternative to chemical preservatives. However, bioactive peptides are easily affected by the external environment in practical application, which hinders their commercialization. Currently, the studies to overcome the weakness focus on encapsulation and chemical synthesis. Bioactive peptides have been applied to the preservation of various foods in experimental research, with good results. In the future, with the deepening understanding of their safety and structure-activity relationship, there may be more bioactive peptides as food preservatives. 10.1021/acs.jafc.1c04020
Recent advances in the use of edible coatings for preservation of avocados: A review. Garcia Franciela,Davidov-Pardo Gabriel Journal of food science Avocados (Persea americana) are a fruit, whose shelf-life is jeopardized by rapid ripening and fungal diseases, which heighten the necessity for postharvest treatments. The use of refrigeration during storage and transport helps delay the ripening process and phytopathogen growth but it is not enough to attenuate the problem, especially once avocados are placed in ambient temperatures. Fungicides are effective in controlling fungal prevalence, but their possible adverse environmental and human health effects have spurred interest in finding safer, natural substitutes. The objective of this paper is to review recent advances and trends in the use of edible coatings as a safe alternative to preserve and extend avocados shelf-life. Edible biopolymer coatings have gained considerable attention due to their ability to extend fruit and vegetable shelf-life. These coatings are a novel type of biodegradable primary packaging made from biological compounds like polysaccharides, proteins, lipids, and other polymers. Coatings are considered nonactive if they only form a physical barrier, separating avocados from their immediate environment, controlling gas and moisture transfer. Active coatings can contain supplementary ingredients with additional properties like antioxidant and antifungal activity. The application of edible coatings shows promising potential in extending avocado shelf-life, replacing synthetic fungicides and reducing economic losses from avocado spoilage. 10.1111/1750-3841.15540
Quality properties of fruits as affected by drying operation. Omolola Adewale O,Jideani Afam I O,Kapila Patrick F Critical reviews in food science and nutrition The increasing consumption of dried fruits requires further attention on the quality parameters. Drying has become necessary because most fruits are highly perishable owing to their high moisture content and the need to make them available all year round and at locations where they are not produced. In addition to preservation, the reduced weight and bulk of dehydrated products decreases packaging, handling and transportation costs. Quality changes associated with drying of fruit products include physical, sensory, nutritional, and microbiological. Drying gives rise to low or moderate glycemic index (GI) products with high calorie, vitamin and mineral contents. This review examines the nutritional benefits of dried fruits, protective compounds present in dried fruits, GI, overview of some fruit drying methods and effects of drying operations on the quality properties such as shrinkage, porosity, texture, color, rehydration, effective moisture diffusivity, nutritional, sensory, microbiological and shelf stability of fruits. 10.1080/10408398.2013.859563
Microbial antagonists to biologically control postharvest decay and preserve fruit quality. Critical reviews in food science and nutrition Postharvest waste due to decay of fruits and vegetables negatively affects food security, while at the same time control of decay and therefore waste can be limited because of consumer concerns about use of synthetic chemicals. Use of antagonistic microorganisms is an eco-friendly technique that represents a promising alternative approach to the use of chemical methods. Understanding the interactions between antagonists and the fruit microbiome will enable the discovery of new methods to reduce postharvest waste. This article reviews different microbial agents, fungi, bacteria and yeasts that could control decay. Recent developments in the use of microorganisms for preserving postharvest fruit quality, formulation of effective antagonists, and the commercialization steps are also discussed. Antagonists control decay through either direct or indirect mechanisms while preserving the appearance, flavor, texture and nutritional value of horticultural products. Microorganisms do not fully control pathogens, and therefore they are usually used with other treatments or have their biocontrol ability modified through genetic manipulations. Despite of these limitations, commercialization of biocontrol products based on antagonists with required stability and biocontrol potential is occurring. Biocontrol of postharvest decay and waste agent is promising technology for fruit and vegetable industries. Further study is necessary to better understand mechanisms and increasing efficiency of this method. 10.1080/10408398.2023.2184323
Review on Natural Preservatives for Extending Fish Shelf Life. Foods (Basel, Switzerland) Fish is extremely perishable as a result of rapid microbial growth naturally present in fish or from contamination. Synthetic preservatives are widely used in fish storage to extend shelf life and maintain quality and safety. However, consumer preferences for natural preservatives and concerns about the safety of synthetic preservatives have prompted the food industry to search natural preservatives. Natural preservatives from microorganisms, plants, and animals have been shown potential in replacing the chemical antimicrobials. Bacteriocins and organic acids from bacteria showed good antimicrobial activities against spoilage bacteria. Plant-derived antimicrobials could prolong fish shelf life and decrease lipid oxidation. Animal-derived antimicrobials also have good antimicrobial activities; however, their allergen risk should be paid attention. Moreover, some algae and mushroom species can also provide a potential source of new natural preservatives. Obviously, the natural preservatives could perform better in fish storage by combining with other hurdles such as non-thermal sterilization processing, modified atmosphere packaging, edible films and coatings. 10.3390/foods8100490
Antimicrobial activity of gamma-poly (glutamic acid), a preservative coating for cherries. Colloids and surfaces. B, Biointerfaces We investigated the minimum inhibitory concentration (MIC), antibacterial activity, and preservation ability of four molar masses of γ-polyglutamic acid (PGA) against Escherichia coli, Bacillus subtilis, and yeast. The antibacterial mechanism was determined based on the cell structure, membrane permeability, and microscopic morphology of the microorganisms. We then measured the weight loss, decay rate, total acid, catalase activity, peroxidase activity, and malondialdehyde content toward the possible use of PGA as a preservative coating for cherries. When the molar mass was greater than 700 kDa, the MIC for Escherichia coli and Bacillus subtilis was less than 2.5 mg/mL. The mechanism of action of the four molar masses of PGA was different with respect to the three microbial species, but a higher molar mass of PGA corresponded to stronger inhibition against the microbes. PGA of 2000 kDa molar mass damaged the microbial cellular structure, resulting in excretion of alkaline phosphatase, but PGA of 1.5 kDa molar mass affected the membrane permeability and the amount of soluble sugar. Scanning electron microscopy indicated the inhibitory effect of PGA. The antibacterial mechanism of PGA was related to the molar mass of PGA and the microbial membrane structure. Compared with the control, a PGA coating effectively inhibit the spoilage rate, delay the ripening, and prolong the shelf life of cherries. 10.1016/j.colsurfb.2023.113272
Nisin as a model food preservative. Hansen J N Critical reviews in food science and nutrition Nisin is a ribosomally synthesized peptide that has broad-spectrum antibacterial activity, including activity against many bacteria that are food-spoilage pathogens. Nisin is produced as a fermentation product of a food-grade bacterium, and the safety and efficacy of nisin as a food preservative have resulted in its widespread use throughout the world, including the U.S. Nisin is a member of the class of antimicrobial substances known as lantibiotics, so called because they contain the unusual amino acid lanthionine. Lantibiotics, in general, have considerable promise as food preservatives, although only nisin has been sufficiently well characterized to be used for this purpose. As the number of known natural lantibiotics has increased and their useful characteristics have been explored, it has become desirable to synthesize structural analogs of nisin and other lantibiotics that do not occur naturally. The fact that lantibiotics are gene-encoded peptides synthesized by transcription and translation allows structural variants to be generated by mutagenesis. This review focuses on the progress that has been made in the construction and biological expression of genetically engineered nisin structural analogs. For example, a host-vector pair has been engineered that permits the construction of mutants of the structural gene for subtilin, which is a naturally occurring structural analog of nisin. The vector is designed in such a way that the mutant gene can be substituted for the natural subtilin gene in the chromosome of Bacillus subtilis, which in turn directs the transcription, translation, posttranslational modifications, and secretion of the mature form of the structural analog. Several structural analogs have been constructed, and their properties have provided insight into some of the structure-function relationships in lantibiotics, as well as their mechanism of antimicrobial action. These advances are assessed together with potential problems in the future development of nisin analogs as valuable new food preservatives. 10.1080/10408399409527650