logo logo
Polyphenol-rich diet mediates interplay between macrophage-neutrophil and gut microbiota to alleviate intestinal inflammation. Cell death & disease Dietary phenolic acids alleviate intestinal inflammation through altering gut microbiota composition and regulating macrophage activation. However, it is unclear how individual phenolic acids affect the interactions between intestinal microbiota and macrophages in the context of inflammatory bowel disease (IBD). Here, we aim to elucidate the mechanism by which phenolic acids alleviate gut inflammation. Mice with or without depletion of macrophages were administered with four individual phenolic acids including chlorogenic, ferulic, caffeic, and ellagic acids, following dextran sulfate sodium (DSS) treatment. Gut microbiota depletion and fecal microbiota transplantation were further performed in mice to investigate the role of the gut microbiota in phenolic acid-mediated protective effect. Colitis severity was evaluated using histological, serological, and immunological measurements. Absence of intestinal microbiota and macrophage deteriorate the epithelial injury in DSS colitis. Chlorogenic acid mitigated colitis by reducing M1 macrophage polarization through suppression of pyruvate kinase M 2 (Pkm2)-dependent glycolysis and inhibition of NOD-like receptor protein 3 (Nlrp3) activation. However, ferulic acid-mediated reduction of colitis was neutrophil-dependent through diminishing the formation of neutrophil extracellular traps. On the other hand, the beneficial effects of caffeic acid and ellagic acid were dependent upon the gut microbiota. In fact, urolithin A (UroA), a metabolite transformed from ellagic acid by the gut microbiota, was found to alleviate colitis and enhance gut barrier function in an IL22-dependent manner. Overall, our findings demonstrated that the mechanisms by which phenolic acid protected against colitis were resulted from the interaction between gut microbiota and macrophage-neutrophil. 10.1038/s41419-023-06190-4
Regulation of Intestinal Inflammation by Walnut-Derived Bioactive Compounds. Nutrients Walnuts ( L.) have shown promising effects in terms of ameliorating inflammatory bowel disease (IBD), attributed to their abundant bioactive compounds. This review comprehensively illustrates the key mechanisms underlying the therapeutic potential of walnuts in IBD management, including the modulation of intestinal mucosa permeability, the regulation of inflammatory pathways (such as NF-kB, COX/COX2, MAPCK/MAPK, and iNOS/NOS), relieving oxidative stress, and the modulation of gut microbiota. Furthermore, we highlight walnut-derived anti-inflammatory compounds, such as polyunsaturated fatty acids (PUFA; e.g., ω-3 PUFA), tocopherols, phytosterols, sphingolipids, phospholipids, phenolic compounds, flavonoids, and tannins. We also discuss unique anti-inflammatory compounds such as peptides and polysaccharides, including their extraction and preparation methods. Our review provides a theoretical foundation for dietary walnut supplementation in IBD management and provides guidance for academia and industry. In future, research should focus on the targeted isolation and purification of walnut-derived anti-inflammatory compounds or optimizing extraction methods to enhance their yields, thereby helping the food industry to develop dietary supplements or walnut-derived functional foods tailored for IBD patients. 10.3390/nu16162643
Unveiling the structural properties of water-soluble lignin from gramineous biomass by autohydrolysis and its functionality as a bioactivator (anti-inflammatory and antioxidative). Wang Rong,Zheng Liming,Xu Qinmei,Xu Liang,Wang Daojuan,Li Jinyang,Lu Geng,Huang Caoxing,Wang Yong International journal of biological macromolecules Due to its low molecular weight and abundant functional groups, water-soluble lignin (WSL) is considered as a more potent antioxidant than traditional industrial lignin in biofields. However, few studies have been conducted to evaluate its intracellular and endogenous reactive oxygen species (ROS)-scavenging ability, especially for the intervention of ROS-related disease in vivo. In this work, WSL in bamboo autohydrolysate (WSL-BM) and wheat stalk autohydrolysate (WSL-WS) were isolated and characterized to comparably analyze their bioactivities. The composition analysis and NMR characterization showed that both WSL-BM and WSL-WS contained relatively similar components and substructures, but WSL-BM contained higher contents of phenolic OH groups. Both WSL samples exhibited excellent biocompatibility with the concentration below 50 μg/mL, while WSL-BM exhibited superior ROS-scavenging ability and ROS-related ulcerative colitis treatment potential at same concentration. In addition, WSL-BM also showed better performance in ameliorating inflammation and oxidative stress in RAW 264.7 cells and colitis mice by activating Nrf2 and suppressing NFκB signaling, resulting in an overall improvement in both macroscopic and histological parameters. Overall, these results implied that WSL from gramineous biomass can be used as a novel anti-inflammatory and antioxidative agent in the biomedical field. 10.1016/j.ijbiomac.2021.09.124
Lignin-Based Antioxidant Hydrogel Patch for the Management of Atopic Dermatitis by Mitigating Oxidative Stress in the Skin. ACS applied materials & interfaces Atopic dermatitis (AD), a chronic skin condition characterized by itching, redness, and inflammation, is closely associated with heightened levels of endogenous reactive oxygen species (ROS) in the skin. ROS can contribute to the onset and progression of AD through oxidative stress, which leads to the release of proinflammatory cytokines, T-cell differentiation, and the exacerbation of skin symptoms. In this study, we aim to develop a therapeutic antioxidant hydrogel patch for the potential treatment of AD using lignin, a biomass waste material. Lignin contains polyphenol groups that enable it to scavenge ROS and exhibit antioxidant properties. The lignin hydrogel patches, possessing optimized mechanical properties through the control of the lignin and cross-linker ratio, demonstrated high ROS-scavenging capabilities. Furthermore, the lignin hydrogel demonstrated excellent biocompatibility with the skin, exhibiting beneficial properties in protecting human keratinocytes under high oxidative conditions. When applied to an AD mouse model, the hydrogel patch effectively reduced epidermal thickness in inflamed regions, decreased mast cell infiltration, and regulated inflammatory cytokine levels. These findings collectively suggest that lignin serves as a therapeutic hydrogel patch for managing AD by modulating oxidative stress through its ROS-scavenging ability. 10.1021/acsami.4c05523
The synergic impact of lignin and Lactobacillus plantarum on DSS-induced colitis model via regulating CD44 and miR 199a alliance. World journal of microbiology & biotechnology Chronic or recurrent immune system activation and inflammation inside the gastrointestinal tract is characterized by inflammatory bowel disease (IBD). Due to the lack of safety and efficacy of traditional medications, the use of food supplements for IBD management is on the rise. Numerous studies reported that, certain food supplements have a variety of therapeutic benefits for IBD. In the present study, a mouse model of IBD was used to the anti-colitis effects of lignin supplementation with Lactobacillus plantarum (L. plantarum) on intestinal inflammation. The animal model was treated with dextran sodium sulphate (DSS), the illness index increased, and colon length and body weight declined, but these effects were reversed when lignin and L. plantarum treated groups. In addition, lignin and L. plantarum supplementation inhibited the DSS induced increase in levels of cytokines TNF-α (250 pg/mL), INF-γ (180 pg/mL), IL-1β (70 pg/mL) and TGF- β (72 pg/mL). Gene and protein expression study revealed that Lignin and L. plantarum supplementation restored the expression of E-cad and suppressed the expression of STAT3 in DSS induced colitis model. Lignin and L. plantarum supplementation also suppressed CD44 expression (1.2 fold) by up regulating the expression of miR199a (1 fold) over DSS induced colitis. Our study suggests that Lactobacillus, lignin, and their synergistic treatments have protective roles against inflammatory bowel disease through changes in inflammatory cytokines, and miR 199a expression in DSS-induced colitis. 10.1007/s11274-022-03424-z