LRSAM1 E3 Ubiquitin Ligase Promotes Choriocarcinoma Progression and Metastasis via p53/p21 Signaling Impediment.
BioMed research international
Objective:The E3 ubiquitin ligase LRSAM1 (LRSAM1) was involved in many cancers, but whether it exerts anti- or protumor efficacies on choriocarcinoma cellular structures remains unknown. We wanted to explore the efficacies of aberrant LRSAM1 expression on human choriocarcinoma cellular structures and the underlying mechanisms. Methods:LRSAM1 mRNA expressions in choriocarcinoma lines of cells JEG-3 and JAR cellular structures, as well as HTR8/sev8 human trophoblastic cell line cellular structures, were assessed using assay analysis of quantitative real-time polymerase chain reactions. We compared cell proliferation, migratory flow, invasive force, adhesion, and apoptotic process between cellular structures infected with si-LRSAM1 plasmids versus negative controls using CCK-8, clone formation, Transwell, adhesion, and flow cytometry assays. Protein expressions of LRSAM1, E-cadherin, and N-cadherin (indicators of epithelial-mesenchymal transformation) and p53/p21 pathway components were quantitated using a Western blot assay. The morphology of tumor lesions was observed in xenografted nude mice using immunohistochemistry (IHC) analyses. Results:LRSAM1 was markedly overexpressed within JEG-3 and JAR choriocarcinoma cellular structures compared to HTR8/sev8 trophoblast cellular structures. Compared to si-NC, LRSAM1 knockdown robustly restricted cell proliferating, migratory flow, invasive force, and adhesion and fueled apoptotic cell process in JEG-3 as well as JAR cellular structures and suppressed tumor growth, as evidenced by the reduction in tumor volume and weight in naked mice inoculated with transfected cellular structures. Compared to si-negative control (si-NC), si-LRSAM1 significantly decreased Ki67 (a proliferating indicator) and N-cadherin expressions but reduced E-cadherin expression in JEG-3 and JAR cellular structures. Blocking the p53/p21 pathway by pifithrin-a (a p53 restrictor) successfully reversed the anti-inhibitory effect of LRSAM1 depletion, resulting in enhanced proliferating and metastasis in JEG-3 and JAR cellular structures. Conclusion:LRSAM1 exerts tumorigenic roles in choriocarcinoma. Via the activating of the p53/p21 pathway of signaling and impediment of choriocarcinoma cell proliferating, migratory flow, and invasive force, LRSAM1 knockdown slows the course of the disease. For choriocarcinoma diagnosis and treatment, it serves as a new therapeutic target.
10.1155/2022/1926605
Erianin induces ferroptosis in GSCs via REST/LRSAM1 mediated SLC40A1 ubiquitination to overcome TMZ resistance.
Cell death & disease
In recent studies, erianin, a natural product isolated from Dendrobium chrysotoxum Lindl, has exhibited notable anticancer properties. Ferroptosis, a novel form of programmed cell death, holds potential as a strategy to overcome Temozolomide (TMZ) resistance in glioma by inducing ferroptosis in TMZ-resistant glioma cells. Here, utilizing various phenotyping experiments, including cell counting kit-8 (CCK-8) assays, EdU assays, transwell assays, neurosphere formation assays and extreme limiting dilution (ELDA) assays, we demonstrated that erianin exerts its anticancer activity on both TMZ sensitive and TMZ-resistant glioma stem cells (GSCs). Furthermore, we made an exciting discovery that erianin enhances TMZ sensitivity in TMZ-resistant GSCs. Subsequently, we demonstrated that erianin induced ferroptosis in TMZ-resistant GSCs and enhances TMZ sensitivity through inducing ferroptosis, which was confirmed by intracellular measurements of ROS, GSH, and MDA, as well as through the use of BODIPY (581/591) C11 and transmission electron microscopy. Conversely, the ferroptosis inhibitor ferrostatin-1 (Fer-1) blocked the effects of erianin. The underlying mechanism of ferroptosis induced by erianin was further explored through co-immunoprecipitation (Co-IP) assays, ubiquitination assays, protein stability assessments, chromatin immunoprecipitation (ChIP) assays and luciferase reporter gene assays. We found that erianin specifically targets REST, inhibiting its transcriptional repression function without altering its expression levels. Consequently, this suppression of REST's role leads to an upregulation of LRSAM1 expression. In turn, LRSAM1 ubiquitinates and degrades SLC40A1, a protein that inhibits ferroptosis by exporting ferrous ions. By downregulating SLC40A1, erianin ultimately induces ferroptosis in TMZ-resistant GSCs. Taken together, our research demonstrates that the natural product erianin inhibits the malignant phenotype of GSCs and increases the sensitivity of TMZ in TMZ-resistant GSCs by inducing ferroptosis. These findings suggest erianin as a prospective compound for the treatment of TMZ-resistant glioma.
10.1038/s41419-024-06902-4
Discovery of Berberine that Targetedly Induces Autophagic Degradation of both BCR-ABL and BCR-ABL T315I through Recruiting LRSAM1 for Overcoming Imatinib Resistance.
Yin Zhao,Huang Guiping,Gu Chunming,Liu Yanjun,Yang Juhua,Fei Jia
Clinical cancer research : an official journal of the American Association for Cancer Research
PURPOSE:Imatinib, the breakpoint cluster region protein (BCR)/Abelson murine leukemia viral oncogene homolog (ABL) inhibitor, is widely used to treat chronic myeloid leukemia (CML). However, imatinib resistance develops in many patients. Therefore, new drugs with improved therapeutic effects are urgently needed. Berberine (BBR) is a potent BCR-ABL inhibitor for imatinib-sensitive and -resistant CML. EXPERIMENTAL DESIGN:Protein structure analysis and virtual screening were used to identify BBR targets in CML. Molecular docking analysis, surface plasmon resonance imaging, nuclear magnetic resonance assays, and thermoshift assays were performed to confirm the BBR target. The change in BCR-ABL protein expression after BBR treatment was assessed by Western blotting. The effects of BBR were assessed in cell lines, in mice, and in human CML bone marrow cells as a potential strategy to overcome imatinib resistance. RESULTS:We discovered that BBR bound to the protein tyrosine kinase domain of BCR-ABL. BBR inhibited the activity of BCR-ABL and BCR-ABL with the T315I mutation, and it also degraded these proteins via the autophagic lysosome pathway by recruiting E3 ubiquitin-protein ligase LRSAM1. BBR inhibited the cell viability and colony formation of CML cells and prolonged survival in CML mouse models with imatinib sensitivity and resistance. CONCLUSIONS:The results show that BBR directly binds to and degrades BCR-ABL and BCR-ABL T315I via the autophagic lysosome pathway by recruiting LRSAM1. The use of BBR is a new strategy to improve the treatment of patients with CML with imatinib sensitivity or resistance..
10.1158/1078-0432.CCR-19-2460