logo logo
The p53/p21Cip1/ Waf1 pathway mediates the effects of SPARC on melanoma cell cycle progression. Fenouille Nina,Robert Guillaume,Tichet Mélanie,Puissant Alexandre,Dufies Maeva,Rocchi Stéphane,Ortonne Jean-Paul,Deckert Marcel,Ballotti Robert,Tartare-Deckert Sophie Pigment cell & melanoma research Secreted protein acidic and rich in cysteine (SPARC), or osteonectin, belongs to the family of matricellular proteins that modulate cell-matrix interactions and cellular functions. SPARC is highly expressed in melanoma, and we reported that SPARC promotes epithelial/mesenchymal-like changes and cell migration. Here, we used siRNA and conditional shRNA to investigate the contribution of tumor-derived SPARC to melanoma cell growth in vitro and in vivo. We found that depletion of SPARC induces G2/M cell cycle arrest and tumor growth inhibition with activation of p53 and induction of p21(Cip1/Waf1) acting as a checkpoint, preventing efficient mitotic progression. In addition, we demonstrate that reduced mesenchymal features and the invasive potential of SPARC-silenced cells are independent of p21(Cip1/Waf1) induction and cell cycle arrest. Importantly, overexpression of SPARC reduces p53 protein levels and leads to an increase in cell number during exponential growth. Our findings indicate that in addition to its well-known function as a mediator of melanoma cell migration and tumor-host interactions, SPARC regulates, in a cell-autonomous manner, cell cycle progression and proliferation through the p53/p21(Cip1/Waf1) pathway. 10.1111/j.1755-148X.2010.00790.x
Induction of SPARC on Oxidative Stress, Inflammatory Phenotype Transformation, and Apoptosis of Human Brain Smooth Muscle Cells Via TGF-β1-NOX4 Pathway. Journal of molecular neuroscience : MN Secreted protein acidic and rich in cysteine (SPARC) has a close association with inflammatory response and oxidative stress in tissues and is widely expressed in intracranial aneurysms (IAs), especially in smooth muscle cells. Therefore, it is inferred that SPARC might be involved in the formation and development of IAs through the inflammatory response pathway or oxidative stress pathway. The aim of this study is to investigate the pathological mechanism of SPARC in oxidative stress, inflammation, and apoptosis during the formation of IAs, as well as the involvement of TGF-β1 and NOX4 molecules. Human brain vascular smooth muscle cells (HBVSMCs) were selected as experimental objects. After the cells were stimulated by recombinant human SPARC protein in vitro, the ROS level in the cells was measured using an ID/ROS fluorescence analysis kit combined with fluorescence microscope and flow cytometry. The related protein expression in HBVSMCs was measured using western blotting. The mitochondrial membrane potential change was detected using a mitochondrial membrane potential kit and laser confocal microscope. The mechanism was explored by intervention with reactive oxygen scavengers N-acetylcysteine (NAC), TGF-β1 inhibitor (SD-208), and siRNA knockout. The results showed that SPARC upregulated the expression of NOX4 through the TGF-β1-dependent signaling pathway, leading to oxidative stress and pro-inflammatory matrix behavior and apoptosis in HBVSMCs. These findings demonstrated that SPARC may promote the progression of IAs. 10.1007/s12031-020-01566-z
Hippocampal SPARC regulates depression-related behavior. Campolongo M,Benedetti L,Podhajcer O L,Pitossi F,Depino A M Genes, brain, and behavior SPARC (secreted protein acidic and rich in cysteine) is a matricellular protein highly expressed during development, reorganization and tissue repair. In the central nervous system, glial cells express SPARC during development and in neurogenic regions of the adult brain. Astrocytes control the glutamate receptor levels in the developing hippocampus through SPARC secretion. To further characterize the role of SPARC in the brain, we analyzed the hippocampal-dependent adult behavior of SPARC KO mice. We found that SPARC KO mice show increased levels of anxiety-related behaviors and reduced levels of depression-related behaviors. The antidepressant-like phenotype could be rescued by adenoviral vector-mediated expression of SPARC in the adult hippocampus, but anxiety-related behavior persisted in these mice. To identify the cellular mechanisms underlying these behavioral alterations, we analyzed neuronal activity and neurogenesis in the dentate gyrus (DG). SPARC KO mice have increased levels of neuronal activity, evidenced as more neurons that express c-Fos after a footshock. SPARC also affects cell proliferation in the subgranular zone of the DG, although it does not affect maturation and survival of new neurons. SPARC expression in the adult DG does not revert the proliferation phenotype in KO mice, but our results suggest a role of SPARC in limiting the survival of new neurons in the DG. This work suggests that SPARC could affect anxiety-related behavior by modulating neuronal activity, and that depression-related behavior is dependent upon the adult expression of SPARC, which affects adult brain function by mechanisms that need to be elucidated. 10.1111/j.1601-183X.2012.00848.x