logo logo
KIF15 missense variant is associated with the early onset of idiopathic pulmonary fibrosis. Respiratory research BACKGROUND:Idiopathic pulmonary fibrosis (IPF) has an unknown aetiology and limited treatment options. A recent meta-analysis identified three novel causal variants in the TERT, SPDL1, and KIF15 genes. This observational study aimed to investigate whether the aforementioned variants cause clinical phenotypes in a well-characterised IPF cohort. METHODS:The study consisted of 138 patients with IPF who were diagnosed and treated at the Helsinki University Hospital and genotyped in the FinnGen FinnIPF study. Data on > 25 clinical parameters were collected by two pulmonologists who were blinded to the genetic data for patients with TERT loss of function and missense variants, SPDL1 and KIF15 missense variants, and a MUC5B variant commonly present in patients with IPF, or no variants were separately analysed. RESULTS:The KIF15 missense variant is associated with the early onset of the disease, leading to progression to early-age transplantation or death. In patients with the KIF15 variant, the median age at diagnosis was 54.0 years (36.5-69.5 years) compared with 72.0 years (65.8-75.3 years) in the other patients (P = 0.023). The proportion of KIF15 variant carriers was 9- or 3.6-fold higher in patients aged < 55 or 65 years, respectively. The variants for TERT and MUC5B had similar effects on the patient's clinical course, as previously described. No distinct phenotypes were observed in patients with the SPDL1 variant. CONCLUSIONS:Our study indicated the potential of KIF15 to be used in the genetic diagnostics of IPF. Further studies are needed to elucidate the biological mechanisms of KIF15 in IPF. 10.1186/s12931-023-02540-0
Peripheral Blood Single-Cell Sequencing Uncovers Common and Specific Immune Aberrations in Fibrotic Lung Diseases. bioRxiv : the preprint server for biology Rationale and Objectives:The extent and commonality of peripheral blood immune aberrations in fibrotic interstitial lung diseases are not well characterized. In this study, we aimed to identify common and distinct immune aberrations in patients with idiopathic pulmonary fibrosis (IPF) and fibrotic hypersensitivity pneumonitis (FHP) using cutting-edge single-cell profiling technologies. Methods:Single-cell RNA sequencing was performed on patients and healthy controls' peripheral blood and bronchoalveolar lavage samples using 10X Genomics 5' gene expression and V(D)J profiling. Cell type composition, transcriptional profiles, cellular trajectories and signaling, and T and B cell receptor repertoires were studied. The standard Seurat R pipeline was followed for cell type composition and differential gene expression analyses. Transcription factor activity was imputed using the DoRothEA-VIPER algorithm. Pseudotime analyses were conducted using Monocle3, while RNA velocity analyses were performed with Velocyto, scVelo, and CellRank. Cell-cell connectomics were assessed using the Connectome R package. V(D)J analyses were conducted using CellRanger and Immcantation frameworks. Across all analyses, disease group differences were assessed using the Wilcoxon rank-sum test. Measurements and Main Results:327,990 cells from 83 samples were profiled. Overall, changes in monocytes were common to IPF and FHP, whereas lymphocytes exhibited disease-specific aberrations. Both diseases displayed enrichment of CCL3 /CCL4 CD14+ monocytes (p<2.2e-16) and S100A CD14+ monocytes (p<2.2e-16) versus controls. Trajectory and RNA velocity analysis suggested that pro-fibrotic macrophages observed in BAL originated from peripheral blood monocytes. Lymphocytes exhibited disease-specific aberrations, with CD8+ GZMK T cells and activated B cells primarily enriched in FHP patients. V(D)J analyses revealed unique T and B cell receptor complementarity-determining region 3 (CDR3) amino acid compositions (p<0.05) in FHP and significant IgA enrichment in IPF (p<5.2e-7). Conclusions:We identified common and disease-specific immune mechanisms in IPF and FHP; S100A monocytes and SPP1 macrophages are common to IPF and FHP, whereas GMZK T lymphocytes and T and B cell receptor repertoires were unique in FHP. Our findings open novel strategies for the diagnosis and treatment of IPF and FHP. 10.1101/2023.09.20.558301